Category Archives: Expository

A Kurepa tree from diamond-plus

Recall that $T$ is said to be a $\kappa$-Kurepa tree if $T$ is a tree of height $\kappa$, whose levels $T_\alpha$ has size $\le|\alpha|$ for co-boundedly many $\alpha<\kappa$, and such that the set of branches of $T$ has size $>\kappa$. … Continue reading

Posted in Blog, Expository | Tagged , | Leave a comment

The S-space problem, and the cardinal invariant $\mathfrak b$

Recall that an S-space is a regular hereditarily separable topological space which is not hereditarily Lindelöf. In a previous post, we showed that such a space exists after adding a Cohen real. Here, we shall construct one from an arithmetic … Continue reading

Posted in Blog, Expository | Tagged , | Leave a comment

The S-space problem, and the cardinal invariant $\mathfrak b$

Recall that an S-space is a regular hereditarily separable topological space which is not hereditarily Lindelöf. In a previous post, we showed that such a space exists after adding a Cohen real. Here, we shall construct one from an arithmetic … Continue reading

Posted in Blog, Expository | Tagged , | Leave a comment

An $S$-space from a Cohen real

Recall that an $S$-space is a regular hereditarily separable topological space which is not hereditarily Lindelöf. In this post, we shall establish the consistency of the existence of such a space. Theorem (Roitman, 1979). Let $\mathbb C=({}^{<\omega}\omega,\subseteq)$ be the notion of … Continue reading

Posted in Blog, Expository | Tagged , | 6 Comments

Forcing with a Souslin tree makes $\mathfrak p=\omega_1$

I was meaning to include a proof of Farah’s lemma in my previous post, but then I realized that the slick proof assumes some background which may worth spelling out, first. Therefore, I am dedicating a short post for a … Continue reading

Posted in Blog, Expository | Tagged | 2 Comments

Forcing with a Souslin tree makes $\mathfrak p=\omega_1$

I was meaning to include a proof of Farah’s lemma in my previous post, but then I realized that the slick proof assumes some background which may worth spelling out, first. Therefore, I am dedicating a short post for a … Continue reading

Posted in Blog, Expository | Tagged | 2 Comments

The S-space problem, and the cardinal invariant $\mathfrak p$

Recall that an $S$-space is a regular hereditarily separable topological space which is not hereditarily Lindelöf. Do they exist? Consistently, yes. However, Szentmiklóssy proved that compact $S$-spaces do not exist, assuming Martin’s Axiom. Pushing this further, Todorcevic later proved that … Continue reading

Posted in Blog, Expository, Open Problems | Tagged , , , | 4 Comments

Jones’ theorem on the cardinal invariant $\mathfrak p$

This post continues the study of the cardinal invariant $\mathfrak p$. We refer the reader to a previous post for all the needed background. For ordinals $\alpha,\alpha_0,\alpha_1,\beta,\beta_0,\beta_1$, the polarized partition relation $$\left(\begin{array}{c}\alpha\\\beta\end{array}\right)\rightarrow\left(\begin{array}{cc}\alpha_0&\alpha_1\\\beta_0&\beta_1\end{array}\right)$$ asserts that for every coloring $f:\alpha\times\beta\rightarrow 2$, (at least) … Continue reading

Posted in Blog, Expository | Tagged | Leave a comment

Jones’ theorem on the cardinal invariant $\mathfrak p$

This post continues the study of the cardinal invariant $\mathfrak p$. We refer the reader to a previous post for all the needed background. For ordinals $\alpha,\alpha_0,\alpha_1,\beta,\beta_0,\beta_1$, the polarized partition relation $$\left(\begin{array}{c}\alpha\\\beta\end{array}\right)\rightarrow\left(\begin{array}{cc}\alpha_0&\alpha_1\\\beta_0&\beta_1\end{array}\right)$$ asserts that for every coloring $f:\alpha\times\beta\rightarrow 2$, (at least) … Continue reading

Posted in Blog, Expository | Tagged , | Leave a comment

Bell’s theorem on the cardinal invariant $\mathfrak p$

In this post, we shall provide a proof to a famous theorem of Murray Bell stating that $MA_\kappa(\text{the class of }\sigma\text{-centered posets})$ holds iff $\kappa<\mathfrak p$. We commence with defining the cardinal invariant $\mathfrak p$. For sets $A$ and $B$, … Continue reading

Posted in Blog, Expository | Tagged , | 2 Comments