Tag Archives: Weakly compact cardinal

Was Ulam right? I: Basic theory and subnormal ideals

Joint work with Tanmay Inamdar. Abstract. We introduce various coloring principles which generalize the so-called onto mapping principle of Sierpinski to larger cardinals and general ideals. We prove that these principles capture the notion of an Ulam matrix and allow … Continue reading

Posted in Partition Relations | Tagged , , , , , , , , , , , | 1 Comment

Fake Reflection

Joint work with Gabriel Fernandes and Miguel Moreno. Abstract. We introduce a generalization of stationary set reflection which we call filter reflection, and show it is compatible with the axiom of constructibility as well as with strong forcing axioms. We … Continue reading

Posted in Generalized Descriptive Set Theory, Publications | Tagged , , , , , , , , | 1 Comment

The eightfold way

Joint work with James Cummings, Sy-David Friedman, Menachem Magidor, and Dima Sinapova. Abstract. Three central combinatorial properties in set theory are the tree property, the approachability property and stationary reflection. We prove the mutual independence of these properties by showing … Continue reading

Posted in Compactness | Tagged , , , , , | 1 Comment

Strong failures of higher analogs of Hindman’s Theorem

Joint work with David J. Fernández Bretón. Abstract.  We show that various analogs of Hindman’s Theorem fail in a strong sense when one attempts to obtain uncountable monochromatic sets: Theorem 1. There exists a colouring $c:\mathbb R\rightarrow\mathbb Q$, such that … Continue reading

Posted in Groups, Partition Relations, Publications | Tagged , , , , , , , , , , , , , , , | 1 Comment

The reflection principle $R_2$

A few years ago, in this paper, I introduced the following reflection principle: Definition. $R_2(\theta,\kappa)$ asserts that for every function $f:E^\theta_{<\kappa}\rightarrow\kappa$, there exists some $j<\kappa$ for which the following set is nonstationary: $$A_j:=\{\delta\in E^\theta_\kappa\mid f^{-1}[j]\cap\delta\text{ is nonstationary}\}.$$ I wrote there … Continue reading

Posted in Blog | Tagged , , , | Leave a comment

Higher Souslin trees and the GCH, revisited

Abstract.  It is proved that for every uncountable cardinal $\lambda$, GCH+$\square(\lambda^+)$ entails the existence of a $\text{cf}(\lambda)$-complete $\lambda^+$-Souslin tree. In particular, if GCH holds and there are no $\aleph_2$-Souslin trees, then $\aleph_2$ is weakly compact in Godel’s constructible universe, improving … Continue reading

Posted in Publications, Souslin Hypothesis | Tagged , , , , , , , | 16 Comments

Chain conditions of products, and weakly compact cardinals

Abstract.  The history of productivity of the $\kappa$-chain condition in partial orders, topological spaces, or Boolean algebras is surveyed, and its connection to the set-theoretic notion of a weakly compact cardinal is highlighted. Then, it is proved that for every … Continue reading

Posted in Partition Relations, Publications | Tagged , , , , , | 2 Comments