Tag Archives: Respecting tree

Proxy principles in combinatorial set theory

Joint work with Ari Meir Brodsky and Shira Yadai. Abstract. The parameterized proxy principles were introduced by Brodsky and Rinot in a 2017 paper as new foundations for the construction of $\kappa$-Souslin trees in a uniform way that does not … Continue reading

Posted in Preprints, Souslin Hypothesis | Tagged , , , , , , , | 1 Comment

The vanishing levels of a tree

Joint work with Shira Yadai and Zhixing You. Abstract. We initiate the study of the spectrum $Vspec(\kappa)$ of sets that can be realized as the vanishing levels $V(\mathbf T)$ of a normal $\kappa$-tree $\mathbf T$. The latter is an invariant in … Continue reading

Posted in Preprints, Souslin Hypothesis | Tagged , , , , , , , , | 1 Comment

Square with built-in diamond-plus

Joint work with Ralf Schindler. Abstract. We formulate combinatorial principles that combine the square principle with various strong forms of diamond, and prove that the strongest amongst them holds in $L$ for every infinite cardinal. As an application, we prove that … Continue reading

Posted in Publications, Squares and Diamonds | Tagged , , , , , , , , | 1 Comment

Reduced powers of Souslin trees

Joint work with Ari Meir Brodsky. Abstract. We study the relationship between a $\kappa$-Souslin tree $T$ and its reduced powers $T^\theta/\mathcal U$. Previous works addressed this problem from the viewpoint of a single power $\theta$, whereas here, tools are developed … Continue reading

Posted in Publications, Souslin Hypothesis | Tagged , , , , , , , , , , , , , | 2 Comments