Tag Archives: xbox

Proxy principles in combinatorial set theory

Joint work with Ari Meir Brodsky and Shira Yadai. Abstract. The parameterized proxy principles were introduced by Brodsky and Rinot in a 2017 paper as new foundations for the construction of $\kappa$-Souslin trees in a uniform way that does not … Continue reading

Posted in Preprints, Souslin Hypothesis | Tagged , , , , , , , | 1 Comment

Strongest transformations

Joint work with Jing Zhang. Abstract. We continue our study of maps transforming high-dimensional complicated objects into squares of stationary sets. Previously, we proved that many such transformations exist in ZFC, and here we address the consistency of the strongest … Continue reading

Posted in Partition Relations, Publications | Tagged , , , , , , | 2 Comments

A microscopic approach to Souslin-tree constructions. Part II

Joint work with Ari Meir Brodsky. Abstract. In Part I of this series, we presented the microscopic approach to Souslin-tree constructions, and argued that all known $\diamondsuit$-based constructions of Souslin trees with various additional properties may be rendered as applications of … Continue reading

Posted in Publications, Souslin Hypothesis | Tagged , , , , , , , , | 2 Comments

More notions of forcing add a Souslin tree

Joint work with Ari Meir Brodsky. Abstract.   An $\aleph_1$-Souslin tree is a complicated combinatorial object whose existence cannot be decided on the grounds of ZFC alone. But 15 years after Tennenbaum and independently Jech devised notions of forcing for introducing … Continue reading

Posted in Publications, Souslin Hypothesis | Tagged , , , , | 2 Comments

Higher Souslin trees and the GCH, revisited

Abstract.  It is proved that for every uncountable cardinal $\lambda$, GCH+$\square(\lambda^+)$ entails the existence of a $\text{cf}(\lambda)$-complete $\lambda^+$-Souslin tree. In particular, if GCH holds and there are no $\aleph_2$-Souslin trees, then $\aleph_2$ is weakly compact in Godel’s constructible universe, improving … Continue reading

Posted in Publications, Souslin Hypothesis | Tagged , , , , , , , | 16 Comments

A microscopic approach to Souslin-tree constructions. Part I

Joint work with Ari Meir Brodsky. Abstract.  We propose a parameterized proxy principle from which $\kappa$-Souslin trees with various additional features can be constructed, regardless of the identity of $\kappa$. We then introduce the microscopic approach, which is a simple … Continue reading

Posted in Publications, Souslin Hypothesis | Tagged , , , , , , , , , , , | 5 Comments

Square with built-in diamond-plus

Joint work with Ralf Schindler. Abstract. We formulate combinatorial principles that combine the square principle with various strong forms of diamond, and prove that the strongest amongst them holds in $L$ for every infinite cardinal. As an application, we prove that … Continue reading

Posted in Publications, Squares and Diamonds | Tagged , , , , , , , , | 1 Comment

Square principles

Since the birth of Jensen’s original Square principle, many variations of the principle were introduced and intensively studied. Asaf Karagila suggested me today to put some order into all of these principles. Here is a trial. Definition. A square principle … Continue reading

Posted in Blog, Expository | Tagged , , , | 13 Comments