Category Archives: Squares and Diamonds

Diamond on Kurepa trees

Joint work with Ziemek Kostana and Saharon Shelah. Abstract. We introduce a new weak variation of diamond that is meant to only guess the branches of a Kurepa tree. We demonstrate that this variation is considerably weaker than diamond by … Continue reading

Posted in Preprints, Squares and Diamonds | Tagged , , , , | 1 Comment

A club guessing toolbox I

Joint work with Tanmay Inamdar. Abstract. Club guessing principles were introduced by Shelah as a weakening of Jensen’s diamond. Most spectacularly, they were used to prove Shelah’s ZFC bound on the power of the first singular cardinal. These principles have … Continue reading

Posted in Preprints, Squares and Diamonds | Tagged | 1 Comment

A new small Dowker space

Joint work with Roy Shalev and Stevo Todorcevic. Abstract. It is proved that if there exists a Luzin set, or if either the stick principle or $\diamondsuit(\mathfrak b)$ hold, then an instance of the guessing principle $\clubsuit_{AD}$ holds at the … Continue reading

Posted in Squares and Diamonds, Topology | Tagged , , , | 1 Comment

Inclusion modulo nonstationary

Joint work with Gabriel Fernandes and Miguel Moreno. Abstract. A classical theorem of Hechler asserts that the structure $\left(\omega^\omega,\le^*\right)$ is universal in the sense that for any $\sigma$-directed poset $\mathbb P$ with no maximal element, there is a ccc forcing … Continue reading

Posted in Generalized Descriptive Set Theory, Publications, Squares and Diamonds | Tagged , , , | 1 Comment

Weak square and stationary reflection

Joint work with Gunter Fuchs. Abstract. It is well-known that the square principle $\square_\lambda$ entails the existence of a non-reflecting stationary subset of $\lambda^+$, whereas the weak square principle $\square^*_\lambda$ does not. Here we show that if $\mu^{cf(\lambda)}<\lambda$ for all $\mu<\lambda$, … Continue reading

Posted in Publications, Squares and Diamonds | Tagged , , , , , , | Leave a comment

Distributive Aronszajn trees

Joint work with Ari Meir Brodsky. Abstract.  Ben-David and Shelah proved that if $\lambda$ is a singular strong-limit cardinal and $2^\lambda=\lambda^+$, then $\square^*_\lambda$ entails the existence of a $\lambda$-distributive $\lambda^+$-Aronszajn tree. Here, it is proved that the same conclusion remains … Continue reading

Posted in Publications, Squares and Diamonds | Tagged , , , , , , , , , | 1 Comment

Square with built-in diamond-plus

Joint work with Ralf Schindler. Abstract. We formulate combinatorial principles that combine the square principle with various strong forms of diamond, and prove that the strongest amongst them holds in $L$ for every infinite cardinal. As an application, we prove that … Continue reading

Posted in Publications, Squares and Diamonds | Tagged , , , , , , , , | 1 Comment

Putting a diamond inside the square

Abstract. By a 35-year-old theorem of Shelah, $\square_\lambda+\diamondsuit(\lambda^+)$ does not imply square-with-built-in-diamond_lambda for regular uncountable cardinals $\lambda$. Here, it is proved that $\square_\lambda+\diamondsuit(\lambda^+)$ is equivalent to square-with-built-in-diamond_lambda for every singular cardinal $\lambda$. Downloads: Citation information: A. Rinot, Putting a diamond inside … Continue reading

Posted in Publications, Squares and Diamonds | Tagged , , , , | 1 Comment

The search for diamonds

Abstract: This is a review I wrote for the Bulletin of Symbolic Logic  on the following papers: Saharon Shelah, Middle Diamond, Archive for Mathematical Logic, vol. 44 (2005), pp. 527–560. Saharon Shelah, Diamonds, Proceedings of the American Mathematical Society, vol. … Continue reading

Posted in Publications, Reviews, Squares and Diamonds | Tagged , , , | 1 Comment

Jensen’s diamond principle and its relatives

This is chapter 6 in the book Set Theory and Its Applications (ISBN: 0821848127). Abstract: We survey some recent results on the validity of Jensen’s diamond principle at successor cardinals. We also discuss weakening of this principle such as club … Continue reading

Posted in Open Problems, Publications, Squares and Diamonds | Tagged , , , , , , , , , , , , , | 8 Comments