Tag Archives: Amenable C-sequence

Winter School in Abstract Analysis, January 2023

I gave a 3-lecture tutorial at the Winter School in Abstract Analysis in Steken, January 2023. Title: Club guessing Abstract. Club guessing principles were introduced by Shelah as a weakening of Jensen’s diamond. Most spectacularly, they were used to prove … Continue reading

Posted in Invited Talks, Open Problems | Tagged , , , , | Leave a comment

Was Ulam right? I: Basic theory and subnormal ideals

Joint work with Tanmay Inamdar. Abstract. We introduce various coloring principles which generalize the so-called onto mapping principle of Sierpinski to larger cardinals and general ideals. We prove that these principles capture the notion of an Ulam matrix and allow … Continue reading

Posted in Partition Relations | Tagged , , , , , , , , , , , | 1 Comment

Distributive Aronszajn trees

Joint work with Ari Meir Brodsky. Abstract.  Ben-David and Shelah proved that if $\lambda$ is a singular strong-limit cardinal and $2^\lambda=\lambda^+$, then $\square^*_\lambda$ entails the existence of a $\lambda$-distributive $\lambda^+$-Aronszajn tree. Here, it is proved that the same conclusion remains … Continue reading

Posted in Publications, Squares and Diamonds | Tagged , , , , , , , , , | 1 Comment