Tag Archives: Iterated forcing

Diamond on Kurepa trees

Joint work with Ziemek Kostana and Saharon Shelah. Abstract. We introduce a new weak variation of diamond that is meant to only guess the branches of a Kurepa tree. We demonstrate that this variation is considerably weaker than diamond by … Continue reading

Posted in Preprints, Squares and Diamonds | Tagged , , , , | 1 Comment

Sigma-Prikry forcing III: Down to Aleph_omega

Joint work with Alejandro Poveda and Dima Sinapova. Abstract. We prove the consistency of the failure of the singular cardinals hypothesis at $\aleph_\omega$ together with the reflection of all stationary subsets of $\aleph_{\omega+1}$. This shows that two classical results of … Continue reading

Posted in Compactness, Publications, Singular Cardinals Combinatorics | Tagged , , | 1 Comment

Ramsey theory over partitions III: Strongly Luzin sets and partition relations

Joint work with Menachem Kojman and Juris Steprāns. Abstract.  The strongest type of coloring of pairs of countable ordinals, gotten by Todorcevic from a strongly Luzin set, is shown to be equivalent to the existence of a nonmeager set of … Continue reading

Posted in Partition Relations, Publications | Tagged , , , , , , , , , , | 1 Comment

Sigma-Prikry forcing II: Iteration Scheme

Joint work with Alejandro Poveda and Dima Sinapova. Abstract. In Part I of this series, we introduced a class of notions of forcing which we call $\Sigma$-Prikry, and showed that many of the known Prikry-type notions of forcing that centers … Continue reading

Posted in Compactness, Publications, Singular Cardinals Combinatorics | Tagged , , , , | 1 Comment

The eightfold way

Joint work with James Cummings, Sy-David Friedman, Menachem Magidor, and Dima Sinapova. Abstract. Three central combinatorial properties in set theory are the tree property, the approachability property and stationary reflection. We prove the mutual independence of these properties by showing … Continue reading

Posted in Compactness | Tagged , , , , , | 1 Comment

Reflection on the coloring and chromatic numbers

Joint work with Chris Lambie-Hanson. Abstract.  We prove that reflection of the coloring number of graphs is consistent with non-reflection of the chromatic number.  Moreover, it is proved that incompactness for the chromatic number of graphs (with arbitrarily large gaps) … Continue reading

Posted in Compactness, Infinite Graphs, Publications | Tagged , , , , , , , , , , , , , | 2 Comments

The failure of diamond on a reflecting stationary set

Joint work with Moti Gitik. Abstract: It is shown that the failure of $\diamondsuit_S$, for a subset $S\subseteq\aleph_{\omega+1}$ that reflects stationarily often, is consistent with GCH and $\text{AP}_{\aleph_\omega}$, relatively to the existence of a supercompact cardinal. This should be comapred with … Continue reading

Posted in Publications, Squares and Diamonds | Tagged , , , , , , , , , , , , | 1 Comment

A relative of the approachability ideal, diamond and non-saturation

Abstract: Let $\lambda$ denote a singular cardinal. Zeman, improving a previous result of Shelah, proved that $\square^*_\lambda$ together with $2^\lambda=\lambda^+$ implies $\diamondsuit_S$ for every $S\subseteq\lambda^+$ that reflects stationarily often. In this paper, for a subset $S\subset\lambda^+$, a normal subideal of … Continue reading

Posted in Publications, Squares and Diamonds | Tagged , , , , , , , , , , , , | 5 Comments