### Archives

### Recent blog posts

- Prikry forcing may add a Souslin tree June 12, 2016
- The reflection principle $R_2$ May 20, 2016
- Prolific Souslin trees March 17, 2016
- Generalizations of Martin’s Axiom and the well-met condition January 11, 2015
- Many diamonds from just one January 6, 2015
- Happy new jewish year! September 24, 2014
- Square principles April 19, 2014
- Partitioning the club guessing January 22, 2014

### Keywords

Selective Ultrafilter weak diamond tensor product graph Coherent tree diamond star reflection principles Luzin set Souslin Tree Ascent Path weak square 20M14 Rainbow sets Parameterized proxy principle sap Large Cardinals Uniformly coherent Almost Souslin Reduced Power Generalized Clubs Chang's conjecture Constructible Universe Ostaszewski square Rado's conjecture Slim tree Minimal Walks Hereditarily Lindelöf space 11P99 approachability ideal Jonsson cardinal very good scale Dushnik-Miller Fodor-type reflection P-Ideal Dichotomy Non-saturation S-Space Martin's Axiom OCA Partition Relations PFA(S)[S] Club Guessing Hindman's Theorem free Boolean algebra Erdos-Hajnal graphs Cohen real Cardinal function stationary reflection Cardinal Invariants xbox 05A17 Commutative cancellative semigroups Weakly compact cardinal Hedetniemi's conjecture Prevalent singular cardinals Postprocessing function ccc Uniformization Kurepa Hypothesis Fat stationary set super-Souslin tree Shelah's Strong Hypothesis HOD Sakurai's Bell inequality Almost-disjoint famiy Axiom R b-scale Aronszajn tree Forcing Axioms middle diamond square stationary hitting Mandelbrot set Singular Density PFA Rock n' Roll Successor of Regular Cardinal Poset Singular coﬁnality incompactness Antichain Universal Sequences Stevo Todorcevic Foundations Knaster Diamond L-space Singular cardinals combinatorics Square-Brackets Partition Relations projective Boolean algebra coloring number Distributive tree Prikry-type forcing Erdos Cardinal Small forcing Forcing Almost countably chromatic Microscopic Approach Fast club Nonspecial tree Chromatic number polarized partition relation Whitehead Problem Successor of Singular Cardinal Absoluteness square principles

# Tag Archives: Chromatic number

## MFO workshop in Set Theory, February 2017

I gave an invited talk at the Set Theory workshop in Obwerwolfach, February 2017. Talk Title: Coloring vs. Chromatic. Abstract: In a joint work with Chris Lambie-Hanson, we study the interaction between compactness for the chromatic number (of graphs) and … Continue reading

Posted in Invited Talks
Tagged Chromatic number, coloring number, incompactness, stationary reflection
Leave a comment

## Reflection on the coloring and chromatic numbers

Joint work with Chris Lambie-Hanson. Abstract. We prove that reflection of the coloring number of graphs is consistent with non-reflection of the chromatic number. Moreover, it is proved that incompactness for the chromatic number of graphs (with arbitrarily large gaps) … Continue reading

## Same Graph, Different Universe

Abstract. May the same graph admit two different chromatic numbers in two different universes? how about infinitely many different values? and can this be achieved without changing the cardinals structure? In this paper, it is proved that in Godel’s constructible … Continue reading

Posted in Infinite Graphs, Publications
Tagged 03E35, 05C15, 05C63, approachability ideal, Chromatic number, Constructible Universe, Forcing, Ostaszewski square
10 Comments

## INFTY Final Conference, March 2014

I gave an invited talk at the INFTY Final Conference meeting, Bonn, March 4-7, 2014. [Curiosity: Georg Cantor was born March 3, 1845] Title: Same Graph, Different Universe. Abstract: In a paper from 1998, answering a question of Hajnal, Soukup … Continue reading

## Set Theory Programme on Large Cardinals and Forcing, September 2013

I gave an invited talk at the Large Cardinals and Forcing meeting, Erwin Schrödinger International Institute for Mathematical Physics, Vienna, September 23–27, 2013. Talk Title: Hedetniemi’s conjecture for uncountable graphs Abstract: It is proved that in Godel’s constructible universe, for … Continue reading

Posted in Invited Talks
Tagged Almost countably chromatic, Chromatic number, Hedetniemi's conjecture
1 Comment

## Chromatic numbers of graphs – large gaps

Abstract. We say that a graph $G$ is $(\aleph_0,\kappa)$-chromatic if $\text{Chr}(G)=\kappa$, while $\text{Chr}(G’)\le\aleph_0$ for any subgraph $G’$ of $G$ of size $<|G|$. The main result of this paper reads as follows. If $\square_\lambda+\text{CH}_\lambda$ holds for a given uncountable cardinal $\lambda$, … Continue reading

Posted in Compactness, Infinite Graphs, Publications
Tagged 03E35, 05C15, 05C63, Almost countably chromatic, Chromatic number, incompactness, Ostaszewski square
6 Comments

## The chromatic numbers of the Erdos-Hajnal graphs

Recall that a coloring $c:G\rightarrow\kappa$ of an (undirected) graph $(G,E)$ is said to be chromatic if $c(v_1)\neq c(v_2)$ whenever $\{v_1,v_2\}\in E$. Then, the chromatic number of a graph $(G,E)$ is the least cardinal $\kappa$ for which there exists a chromatic … Continue reading

Posted in Blog, Expository
Tagged Chromatic number, Erdos-Hajnal graphs, Rado's conjecture, reflection principles
11 Comments