### Archives

### Recent blog posts

- A strong form of König’s lemma October 21, 2017
- Prikry forcing may add a Souslin tree June 12, 2016
- The reflection principle $R_2$ May 20, 2016
- Prolific Souslin trees March 17, 2016
- Generalizations of Martin’s Axiom and the well-met condition January 11, 2015
- Many diamonds from just one January 6, 2015
- Happy new jewish year! September 24, 2014
- Square principles April 19, 2014

### Keywords

Chang's conjecture reflection principles Fat stationary set Jonsson cardinal incompactness Fast club ccc Martin's Axiom Chromatic number Knaster Poset Ostaszewski square Luzin set weak diamond Aronszajn tree S-Space very good scale Singular Density diamond star Universal Sequences Shelah's Strong Hypothesis Almost Souslin Sakurai's Bell inequality projective Boolean algebra square middle diamond P-Ideal Dichotomy stationary hitting Generalized Clubs Rado's conjecture coloring number Whitehead Problem Selective Ultrafilter tensor product graph b-scale Partition Relations Erdos-Hajnal graphs Rainbow sets Commutative cancellative semigroups approachability ideal Large Cardinals weak square Ascent Path Cardinal Invariants Prevalent singular cardinals 05A17 PFA(S)[S] Slim tree 20M14 sap Forcing Kurepa Hypothesis Diamond Microscopic Approach Nonspecial tree Singular coﬁnality Axiom R Non-saturation Erdos Cardinal Cohen real Absoluteness Constructible Universe Forcing Axioms Mandelbrot set Almost countably chromatic Hedetniemi's conjecture Square-Brackets Partition Relations Successor of Regular Cardinal Foundations OCA xbox Weakly compact cardinal HOD Singular cardinals combinatorics PFA Successor of Singular Cardinal super-Souslin tree Hindman's Theorem Club Guessing Cardinal function stationary reflection Postprocessing function Reduced Power Minimal Walks Stevo Todorcevic Souslin Tree Almost-disjoint famiy 11P99 Hereditarily Lindelöf space polarized partition relation Antichain Uniformly coherent Prikry-type forcing Dushnik-Miller square principles free Boolean algebra Uniformization Parameterized proxy principle Fodor-type reflection Coherent tree Rock n' Roll Distributive tree L-space Small forcing

# Tag Archives: Square-Brackets Partition Relations

## 6th European Set Theory Conference, July 2017

I gave a 3-lecture tutorial at the 6th European Set Theory Conference in Budapest, July 2017. Title: Strong colorings and their applications. Abstract. Consider the following questions. Is the product of two $\kappa$-cc partial orders again $\kappa$-cc? Does there exist … Continue reading

Posted in Invited Talks, Open Problems
Tagged b-scale, Cohen real, Luzin set, Minimal Walks, Souslin Tree, Square-Brackets Partition Relations
4 Comments

## Strong failures of higher analogs of Hindman’s Theorem

Joint work with David J. Fernández Bretón. Abstract. We show that various analogs of Hindman’s Theorem fail in a strong sense when one attempts to obtain uncountable monochromatic sets: Theorem 1. There exists a colouring $c:\mathbb R\rightarrow\mathbb Q$, such that … Continue reading

## Prolific Souslin trees

In a paper from 1971, Erdos and Hajnal asked whether (assuming CH) every coloring witnessing $\aleph_1\nrightarrow[\aleph_1]^2_3$ has a rainbow triangle. The negative solution was given in a 1975 paper by Shelah, and the proof and relevant definitions may be found … Continue reading

Posted in Blog, Expository
Tagged Rainbow sets, Souslin Tree, Square-Brackets Partition Relations
Leave a comment

## Complicated Colorings

Abstract. If $\lambda,\kappa$ are regular cardinals, $\lambda>\kappa^+$, and $E^\lambda_{\ge\kappa}$ admits a nonreflecting stationary set, then $\text{Pr}_1(\lambda,\lambda,\lambda,\kappa)$ holds. (Recall that $\text{Pr}_1(\lambda,\lambda,\lambda,\kappa)$ asserts the existence of a coloring $d:[\lambda]^2\rightarrow\lambda$ such that for any family $\mathcal A\subseteq[\lambda]^{<\kappa}$ of size $\lambda$, consisting of pairwise … Continue reading

Posted in Partition Relations, Publications
Tagged Minimal Walks, Square-Brackets Partition Relations
2 Comments

## MFO workshop in Set Theory, January 2014

I gave an invited talk at the Set Theory workshop in Obwerwolfach, January 2014. Talk Title: Complicated Colorings. Abstract: If $\lambda,\kappa$ are regular cardinals, $\lambda>\kappa^+$, and $E^{\lambda}_{\ge\kappa}$ admits a nonreflecting stationary set, then $\text{Pr}_1(\lambda,\lambda,\lambda,\kappa)$ holds. Downloads:

## Rectangular square-bracket operation for successor of regular cardinals

Joint work with Stevo Todorcevic. Extended Abstract: Consider the coloring statement $\lambda^+\nrightarrow[\lambda^+;\lambda^+]^2_{\lambda^+}$ for a given regular cardinal $\lambda$: In 1990, Shelah proved the above for $\lambda>2^{\aleph_0}$; In 1991, Shelah proved the above for $\lambda>\aleph_1$; In 1997, Shelah proved the above … Continue reading

## Comparing rectangles with squares through rainbow sets

In Todorcevic’s class last week, he proved all the results of Chapter 8 from his Walks on Ordinals book, up to (and including) Theorem 8.1.11. The upshots are as follows: Every regular infinite cardinal $\theta$ admits a naturally defined function … Continue reading

## Dushnik-Miller for regular cardinals (part 2)

In this post, we shall provide a proof of Todorcevic’s theorem, that $\mathfrak b=\omega_1$ implies $\omega_1\not\rightarrow(\omega_1,\omega+2)^2$. This will show that the Erdos-Rado theorem that we discussed in an earlier post, is consistently optimal. Our exposition of Todorcevic’s theorem would be … Continue reading

Posted in Blog, Expository
Tagged b-scale, Dushnik-Miller, Partition Relations, Square-Brackets Partition Relations
5 Comments

## CMS Winter Meeting, December 2011

I gave an invited special session talk at the 2011 meeting of the Canadian Mathematical Society. Talk Title: The extent of the failure of Ramsey’s theorem at successor cardinals. Abstract: We shall discuss the results of the following papers: Transforming … Continue reading

## Transforming rectangles into squares, with applications to strong colorings

Abstract: It is proved that every singular cardinal $\lambda$ admits a function $\textbf{rts}:[\lambda^+]^2\rightarrow[\lambda^+]^2$ that transforms rectangles into squares. That is, whenever $A,B$ are cofinal subsets of $\lambda^+$, we have $\textbf{rts}[A\circledast B]\supseteq C\circledast C$, for some cofinal subset $C\subseteq\lambda^+$. As a … Continue reading