### Archives

### Recent blog posts

- A strong form of König’s lemma October 21, 2017
- Prikry forcing may add a Souslin tree June 12, 2016
- The reflection principle $R_2$ May 20, 2016
- Prolific Souslin trees March 17, 2016
- Generalizations of Martin’s Axiom and the well-met condition January 11, 2015
- Many diamonds from just one January 6, 2015
- Happy new jewish year! September 24, 2014
- Square principles April 19, 2014

### Keywords

sap P-Ideal Dichotomy Erdos Cardinal Mandelbrot set stationary reflection Stevo Todorcevic free Boolean algebra Successor of Singular Cardinal Poset Almost countably chromatic Cohen real Absoluteness xbox Singular cardinals combinatorics Cardinal Invariants Constructible Universe Non-saturation Fodor-type reflection Aronszajn tree Sakurai's Bell inequality ccc b-scale Generalized Clubs Minimal Walks Nonspecial tree polarized partition relation weak square Singular Density Almost Souslin Uniformization Kurepa Hypothesis Antichain weak diamond Prikry-type forcing Hedetniemi's conjecture Chang's conjecture Forcing Fast club Hindman's Theorem Universal Sequences super-Souslin tree Fat stationary set Coherent tree Shelah's Strong Hypothesis PFA(S)[S] Dushnik-Miller Uniformly coherent Rado's conjecture approachability ideal incompactness Jonsson cardinal reflection principles Partition Relations Axiom R HOD Hereditarily Lindelöf space Prevalent singular cardinals square Reduced Power Erdos-Hajnal graphs PFA Knaster projective Boolean algebra very good scale Souslin Tree Rock n' Roll coloring number Selective Ultrafilter diamond star Slim tree Commutative cancellative semigroups Forcing Axioms Luzin set Rainbow sets tensor product graph L-space Chromatic number 20M14 Club Guessing Diamond Postprocessing function Weakly compact cardinal Ascent Path 11P99 05A17 Cardinal function Parameterized proxy principle Square-Brackets Partition Relations stationary hitting S-Space Singular coﬁnality Small forcing Successor of Regular Cardinal OCA middle diamond Large Cardinals Ostaszewski square Whitehead Problem Almost-disjoint famiy Foundations Martin's Axiom square principles Microscopic Approach Distributive tree

# Tag Archives: Souslin Tree

## A forcing axiom deciding the generalized Souslin Hypothesis

Joint work with Chris Lambie-Hanson. Abstract. We derive a forcing axiom from the conjunction of square and diamond, and present a few applications, primary among them being the existence of super-Souslin trees. It follows that for every uncountable cardinal $\lambda$, … Continue reading

Posted in Preprints, Souslin Hypothesis
Tagged 03E05, 03E35, 03E57, Diamond, Forcing Axioms, Souslin Tree, square, super-Souslin tree
Leave a comment

## 6th European Set Theory Conference, July 2017

I gave a 3-lecture tutorial at the 6th European Set Theory Conference in Budapest, July 2017. Title: Strong colorings and their applications. Abstract. Consider the following questions. Is the product of two $\kappa$-cc partial orders again $\kappa$-cc? Does there exist … Continue reading

Posted in Invited Talks, Open Problems
Tagged b-scale, Cohen real, Luzin set, Minimal Walks, Souslin Tree, Square-Brackets Partition Relations
4 Comments

## ASL North American Meeting, March 2017

I gave a plenary talk at the 2017 ASL North American Meeting in Boise, March 2017. Talk Title: The current state of the Souslin problem. Abstract: Recall that the real line is that unique separable, dense linear ordering with no endpoints in … Continue reading

## Set Theory and its Applications in Topology, September 2016

I gave an invited talk at the Set Theory and its Applications in Topology meeting, Oaxaca, September 11-16, 2016. The talk was on the $\aleph_2$-Souslin problem. If you are interested in seeing the effect of a jet lag, the video is … Continue reading

## More notions of forcing add a Souslin tree

Joint work with Ari Meir Brodsky. Abstract. An $\aleph_1$-Souslin tree is a complicated combinatorial object whose existence cannot be decided on the grounds of ZFC alone. But 15 years after Tennenbaum and independently Jech devised notions of forcing for introducing … Continue reading

## Prikry forcing may add a Souslin tree

A celebrated theorem of Shelah states that adding a Cohen real introduces a Souslin tree. Are there any other examples of notions of forcing that add a $\kappa$-Souslin tree? and why is this of interest? My motivation comes from a … Continue reading

## Higher Souslin trees and the GCH, revisited

Abstract. It is proved that for every uncountable cardinal $\lambda$, GCH+$\square(\lambda^+)$ entails the existence of a $\text{cf}(\lambda)$-complete $\lambda^+$-Souslin tree. In particular, if GCH holds and there are no $\aleph_2$-Souslin trees, then $\aleph_2$ is weakly compact in Godel’s constructible universe, improving … Continue reading

Posted in Publications, Souslin Hypothesis
Tagged 03E05, 03E35, Souslin Tree, square, Weakly compact cardinal, xbox
16 Comments

## Prolific Souslin trees

In a paper from 1971, Erdos and Hajnal asked whether (assuming CH) every coloring witnessing $\aleph_1\nrightarrow[\aleph_1]^2_3$ has a rainbow triangle. The negative solution was given in a 1975 paper by Shelah, and the proof and relevant definitions may be found … Continue reading

Posted in Blog, Expository
Tagged Rainbow sets, Souslin Tree, Square-Brackets Partition Relations
Leave a comment

## A Microscopic approach to Souslin-tree constructions. Part I

Joint work with Ari Meir Brodsky. Abstract. We propose a parameterized proxy principle from which $\kappa$-Souslin trees with various additional features can be constructed, regardless of the identity of $\kappa$. We then introduce the microscopic approach, which is a simple … Continue reading

Posted in Publications, Souslin Hypothesis
Tagged 03E05, 03E35, 03E65, 05C05, Coherent tree, Diamond, Microscopic Approach, Parameterized proxy principle, Slim tree, Souslin Tree, square, xbox
4 Comments

## P.O.I. Workshop in pure and descriptive set theory, September 2015

I gave an invited talk at the P.O.I Workshop in pure and descriptive set theory, Torino, September 26, 2015. Title: $\aleph_3$-trees. Abstract: We inspect the constructions of four quite different $\aleph_3$-Souslin trees.