Category Archives: Blog

An inconsistent form of club guessing

In this post, we shall present an answer (due to P. Larson) to a question by A. Primavesi concerning a certain strong form of club guessing. We commence with recalling Shelah’s concept of club guessing. Concept (Shelah). Given a regular … Continue reading

Posted in Blog, Open Problems | Tagged | 5 Comments

c.c.c. forcing without combinatorics

In this post, we shall discuss a short paper by Alan Mekler from 1984, concerning a non-combinatorial verification of the c.c.c. property for forcing notions. Recall that a notion of forcing $\mathbb P$ is said to satisfy the c.c.c. iff … Continue reading

Posted in Blog, Expository | Tagged , | 5 Comments

Dushnik-Miller for singular cardinals (part 2)

In the first post on this subject, we provided a proof of $\lambda\rightarrow(\lambda,\omega+1)^2$ for every regular uncountable cardinal $\lambda$. In the second post, we provided a proof of $\lambda\rightarrow(\lambda,\omega)^2$ for every singular cardinal $\lambda$, and showed that $\lambda\rightarrow(\lambda,\omega+1)^2$ fails for every … Continue reading

Posted in Blog, Expository | Tagged , , | 27 Comments

Dushnik-Miller for regular cardinals (part 2)

In this post, we shall provide a proof of Todorcevic’s theorem, that $\mathfrak b=\omega_1$ implies $\omega_1\not\rightarrow(\omega_1,\omega+2)^2$. This will show that the Erdos-Rado theorem that we discussed in an earlier post, is consistently optimal. Our exposition of Todorcevic’s theorem would be … Continue reading

Posted in Blog, Expository | Tagged , , , | 5 Comments

Dushnik-Miller for singular cardinals (part 1)

Continuing the previous post, let us now prove the following. Theorem (Erdos-Dushnik-Miller, 1941). For every singular cardinal λ, we have: $$\lambda\rightarrow(\lambda,\omega)^2.$$ Proof. Suppose that $\lambda$ is a singular cardinal, and $c:[\lambda]^2\rightarrow\{0,1\}$ is a given coloring. For any ordinal $\alpha<\lambda$, denote … Continue reading

Posted in Blog, Expository | Tagged , | 3 Comments

Dushnik-Miller for regular cardinals (part 1)

This is the first out of a series of posts on the following theorem. Theorem (Erdos-Dushnik-Miller, 1941). For every infinite cardinal $\lambda$, we have: $$\lambda\rightarrow(\lambda,\omega)^2.$$ Namely, for any coloring $c:[\lambda]^2\rightarrow\{0,1\}$ there exists either a subset $A\subseteq \lambda$ of order-type $\lambda$ with … Continue reading

Posted in Blog, Expository, Open Problems | Tagged , | 19 Comments

The order-type of clubs in a square sequence

Recall Jensen’s notion of square: Definition (Jensen): For an infinite cardinal $\lambda$, $\square_\lambda$ asserts the existence of a sequence $\overrightarrow C=\left\langle C_\alpha\mid\alpha\in\text{acc}(\lambda^+)\right\rangle$ such that for every limit $\alpha<\lambda^+$: $C_\alpha$ is a club subset of $\alpha$ of order-type $\le\lambda$; if $\beta\in\text{acc}(C_\alpha)$, … Continue reading

Posted in Blog, Open Problems | Tagged | 12 Comments

Music Video: “Wide Open” by Jenny Mayhem

Did you notice the toolbar at the bottom of my posts? e.g.:

Posted in Blog, OffMath | 2 Comments

James Earl Baumgartner

Sad news: Jim Baumgartner passed away. See here.

Posted in Blog | 4 Comments