Joint work with Chris Lambie-Hanson.
Abstract. We prove that reflection of the coloring number of graphs is consistent with non-reflection of the chromatic number. Moreover, it is proved that incompactness for the chromatic number of graphs (with arbitrarily large gaps) is compatible with each of the following compactness principles: Rado’s conjecture, Fodor-type reflection, $\Delta$-reflection, Stationary-sets reflection, Martin’s Maximum, and a generalized Chang’s conjecture.
This is accomplished by showing that, under GCH-type assumptions, instances of incompactness for the chromatic number can be derived from square-like principles that are compatible with large amounts of compactness.
Downloads:
Citation information:
C. Lambie-Hanson and A. Rinot, Reflection on the coloring and chromatic numbers, Combinatorica, 39(1): 165-214, 2019.
Update Feb/2017: Added a new section, entitled “Realizing all closed intervals”.
Submitted to Combinatorica, December 2016.
Accepted, June 2017.