Tag Archives: Minimal Walks

MFO workshop in Set Theory, January 2014

I gave an invited talk at the Set Theory workshop in Obwerwolfach, January 2014. Talk Title: Complicated Colorings. Abstract: If $\lambda,\kappa$ are regular cardinals, $\lambda>\kappa^+$, and $E^{\lambda}_{\ge\kappa}$ admits a nonreflecting stationary set, then $\text{Pr}_1(\lambda,\lambda,\lambda,\kappa)$ holds. Downloads:

Posted in Invited Talks | Tagged , | 5 Comments

Walk on countable ordinals: the characteristics

In this post, we shall present a few aspects of the method of walk on ordinals (focusing on countable ordinals), record its characteristics, and verify some of their properties. All definitions and results in this post are due to Todorcevic. … Continue reading

Posted in Blog, Expository | Tagged | 2 Comments

Rectangular square-bracket operation for successor of regular cardinals

Joint work with Stevo Todorcevic. Extended Abstract: Consider the coloring statement $\lambda^+\nrightarrow[\lambda^+;\lambda^+]^2_{\lambda^+}$ for a given regular cardinal $\lambda$: In 1990, Shelah proved the above for $\lambda>2^{\aleph_0}$; In 1991, Shelah proved the above for $\lambda>\aleph_1$; In 1997, Shelah proved the above … Continue reading

Posted in Partition Relations, Publications | Tagged , , , , | 2 Comments

Young Researchers in Set Theory, March 2011

These are the slides of a talk I gave at the Young Researchers in Set Theory 2011 meeting (Königswinter, 21–25 March 2011). Talk Title: Around Jensen’s square principle Abstract: Jensen‘s square principle for a cardinal $\lambda$ asserts the existence of a particular ladder … Continue reading

Posted in Invited Talks | Tagged , , , , , | Leave a comment

Transforming rectangles into squares, with applications to strong colorings

Abstract: It is proved that every singular cardinal  $\lambda$ admits a function $\textbf{rts}:[\lambda^+]^2\rightarrow[\lambda^+]^2$ that transforms rectangles into squares. That is, whenever $A,B$ are cofinal subsets of $\lambda^+$, we have $\textbf{rts}[A\circledast B]\supseteq C\circledast C$, for some cofinal subset $C\subseteq\lambda^+$. As a … Continue reading

Posted in Partition Relations, Publications | Tagged , , , , , , , | 1 Comment