Tag Archives: 03E35

Reflection on the coloring and chromatic numbers

Joint work with Chris Lambie-Hanson. Abstract.  We prove that reflection of the coloring number of graphs is consistent with non-reflection of the chromatic number.  Moreover, it is proved that incompactness for the chromatic number of graphs (with arbitrarily large gaps) … Continue reading

Posted in Compactness, Preprints | Tagged , , , , , , , , , , , , | 1 Comment

Strong failures of higher analogs of Hindman’s Theorem

Joint work with David J. Fernández Bretón. Abstract.  We show that various analogs of Hindman’s Theorem fail in a strong sense when one attempts to obtain uncountable monochromatic sets: Theorem 1. There exists a colouring $c:\mathbb R\rightarrow\mathbb Q$, such that … Continue reading

Posted in Partition Relations, Publications | Tagged , , , , , , , , , , , , , , | 1 Comment

Higher Souslin trees and the GCH, revisited

Abstract.  It is proved that for every uncountable cardinal $\lambda$, GCH+$\square(\lambda^+)$ entails the existence of a $\text{cf}(\lambda)$-complete $\lambda^+$-Souslin tree. In particular, if GCH holds and there are no $\aleph_2$-Souslin trees, then $\aleph_2$ is weakly compact in Godel’s constructible universe, improving … Continue reading

Posted in Publications, Souslin Hypothesis | Tagged , , , , , | 16 Comments

A Microscopic approach to Souslin-tree constructions. Part I

Joint work with Ari Meir Brodsky. Abstract.  We propose a parameterized proxy principle from which $\kappa$-Souslin trees with various additional features can be constructed, regardless of the identity of $\kappa$. We then introduce the microscopic approach, which is a simple … Continue reading

Posted in Preprints, Souslin Hypothesis | Tagged , , , , , , , , , , , | 3 Comments

Reduced powers of Souslin trees

Joint work with Ari Meir Brodsky. Abstract. We study the relationship between a $\kappa$-Souslin tree $T$ and its reduced powers $T^\theta/\mathcal U$. Previous works addressed this problem from the viewpoint of a single power $\theta$, whereas here, tools are developed … Continue reading

Posted in Publications, Souslin Hypothesis | Tagged , , , , , , , , , , | 2 Comments

Same Graph, Different Universe

Abstract. May the same graph admit two different chromatic numbers in two different universes? how about infinitely many different values? and can this be achieved without changing the cardinals structure? In this paper, it is proved that in Godel’s constructible … Continue reading

Posted in Infinite Graphs, Publications | Tagged , , , , , , , | 10 Comments

Chromatic numbers of graphs – large gaps

Abstract. We say that a graph $G$ is $(\aleph_0,\kappa)$-chromatic if $\text{Chr}(G)=\kappa$, while $\text{Chr}(G’)\le\aleph_0$ for any subgraph $G’$ of $G$ of size $<|G|$. The main result of this paper reads as follows. If  $\square_\lambda+\text{CH}_\lambda$ holds for a given uncountable cardinal $\lambda$, … Continue reading

Posted in Compactness, Infinite Graphs, Publications | Tagged , , , , , , | 6 Comments

Jensen’s diamond principle and its relatives

This is chapter 6 in the book Set Theory and Its Applications (ISBN: 0821848127). Abstract: We survey some recent results on the validity of Jensen’s diamond principle at successor cardinals. We also discuss weakening of this principle such as club … Continue reading

Posted in Open Problems, Publications, Squares and Diamonds | Tagged , , , , , , , , , , , , , | 7 Comments

A cofinality-preserving small forcing may introduce a special Aronszajn tree

Extended Abstract: Shelah proved that Cohen forcing introduces a Souslin tree; Jensen proved that a c.c.c. forcing may consistently add a Kurepa tree; Todorcevic proved that a Knaster poset may already force the Kurepa hypothesis; Irrgang introduced a c.c.c. notion … Continue reading

Posted in Publications, Squares and Diamonds | Tagged , , , , , , | Leave a comment

Openly generated Boolean algebras and the Fodor-type reflection principle

Joint work with Sakaé Fuchino. Abstract: We prove that the Fodor-type Reflection Principle (FRP) is equivalent to the assertion that any Boolean algebra is openly generated if and only if it is $\aleph _2$-projective. Previously it was known that this … Continue reading

Posted in Compactness, Publications | Tagged , , , , , , , , , , , | Leave a comment