### Archives

### Recent blog posts

- More notions of forcing add a Souslin tree June 12, 2016
- The reflection principle $R_2$ May 20, 2016
- Prolific Souslin trees March 17, 2016
- Genearlizations of Martin’s Axiom and the well-met condition January 11, 2015
- Many diamonds from just one January 6, 2015
- Happy new jewish year! September 24, 2014
- Square principles April 19, 2014
- Partitioning the club guessing January 22, 2014

### Keywords

Square-Brackets Partition Relations Reduced Power Successor of Singular Cardinal Singular Cofinality Cohen real Singular coﬁnality projective Boolean algebra diamond star S-Space Almost-disjoint famiy Ascent Path Cardinal Invariants Constructible Universe Weakly compact cardinal Club Guessing Rainbow sets Aronszajn tree Selective Ultrafilter Chromatic number Uniformization Minimal Walks Shelah's Strong Hypothesis middle diamond Prikry-type forcing Absoluteness P-Ideal Dichotomy Almost countably chromatic Diamond Forcing Axioms Non-saturation very good scale weak square Whitehead Problem Parameterized proxy principle Mandelbrot set Foundations Cardinal function Almost Souslin Dushnik-Miller sap square HOD Singular cardinals combinatorics Axiom R Antichain ccc Microscopic Approach Coherent tree Souslin Tree tensor product graph OCA Hedetniemi's conjecture L-space Martin's Axiom Large Cardinals weak diamond Erdos Cardinal Sakurai's Bell inequality Slim tree free Boolean algebra polarized partition relation Successor of Regular Cardinal Forcing approachability ideal Knaster Prevalent singular cardinals Hereditarily Lindelöf space PFA Singular Density stationary reflection Rado's conjecture Small forcing Generalized Clubs Poset Kurepa Hypothesis reflection principles Rock n' Roll Ostaszewski square Partition Relations incompactness Stevo Todorcevic stationary hitting b-scale Fat stationary set PFA(S)[S] Universal Sequences Erdos-Hajnal graphs Fast club

# Tag Archives: 03E35

## Higher Souslin trees and the GCH, revisited

Abstract. It is proved that for every uncountable cardinal $\lambda$, GCH+$\square(\lambda^+)$ entails the existence of a $\text{cf}(\lambda)$-complete $\lambda^+$-Souslin tree. In particular, if GCH holds and there are no $\aleph_2$-Souslin trees, then $\aleph_2$ is weakly compact in Godel’s constructible universe, improving … Continue reading

Posted in Preprints, Souslin Hypothesis
Tagged 03E05, 03E35, Souslin Tree, square, Weakly compact cardinal
15 Comments

## A Microscopic approach to Souslin-tree constructions. Part I

Joint work with Ari Meir Brodsky. Abstract. We propose a parameterized proxy principle from which $\kappa$-Souslin trees with various additional features can be constructed, regardless of the identity of $\kappa$. We then introduce the microscopic approach, which is a simple … Continue reading

Posted in Preprints, Souslin Hypothesis
Tagged 03E05, 03E35, 03E65, 05C05, Coherent tree, Diamond, Microscopic Approach, Parameterized proxy principle, Slim tree, Souslin Tree, square
3 Comments

## Reduced powers of Souslin trees

Joint work with Ari Meir Brodsky. Abstract. We study the relationship between a $\kappa$-Souslin tree $T$ and its reduced powers $T^\theta/\mathcal U$. Previous works addressed this problem from the viewpoint of a single power $\theta$, whereas here, tools are developed … Continue reading

Posted in Preprints, Souslin Hypothesis
Tagged 03E05, 03E35, 03E65, 05C05, Almost Souslin, Ascent Path, Kurepa Hypothesis, Microscopic Approach, Reduced Power, Selective Ultrafilter, Souslin Tree
1 Comment

## Same Graph, Different Universe

Abstract. May the same graph admit two different chromatic numbers in two different universes? how about infinitely many different values? and can this be achieved without changing the cardinals structure? In this paper, it is proved that in Godel’s constructible … Continue reading

Posted in Infinite Graphs, Publications
Tagged 03E35, 05C15, 05C63, approachability ideal, Chromatic number, Constructible Universe, Forcing, Ostaszewski square
10 Comments

## Chromatic numbers of graphs – large gaps

Abstract. We say that a graph $G$ is $(\aleph_0,\kappa)$-chromatic if $\text{Chr}(G)=\kappa$, while $\text{Chr}(G’)\le\aleph_0$ for any subgraph $G’$ of $G$ of size $<|G|$. The main result of this paper reads as follows. If $\square_\lambda+\text{CH}_\lambda$ holds for a given uncountable cardinal $\lambda$, … Continue reading

Posted in Infinite Graphs, Publications
Tagged 03E35, 05C15, 05C63, Almost countably chromatic, Chromatic number, incompactness, Ostaszewski square
5 Comments

## Jensen’s diamond principle and its relatives

This is chapter 6 in the book Set Theory and Its Applications (ISBN: 0821848127). Abstract: We survey some recent results on the validity of Jensen’s diamond principle at successor cardinals. We also discuss weakening of this principle such as club … Continue reading

## A cofinality-preserving small forcing may introduce a special Aronszajn tree

Extended Abstract: Shelah proved that Cohen forcing introduces a Souslin tree; Jensen proved that a c.c.c. forcing may consistently add a Kurepa tree; Todorcevic proved that a Knaster poset may already force the Kurepa hypothesis; Irrgang introduced a c.c.c. notion … Continue reading

Posted in Publications, Squares and Diamonds
Tagged 03E04, 03E05, 03E35, Aronszajn tree, Small forcing, Successor of Singular Cardinal, weak square
Leave a comment

## Openly generated Boolean algebras and the Fodor-type reflection principle

Joint work with Sakaé Fuchino. Abstract: We prove that the Fodor-type Reflection Principle (FRP) is equivalent to the assertion that any Boolean algebra is openly generated if and only if it is $\aleph _2$-projective. Previously it was known that this … Continue reading

## The failure of diamond on a reflecting stationary set

Joint work with Moti Gitik. Abstract: It is shown that the failure of $\diamondsuit_S$, for a subset $S\subseteq\aleph_{\omega+1}$ that reflects stationarily often, is consistent with GCH and $\text{AP}_{\aleph_\omega}$, relatively to the existence of a supercompact cardinal. This should be comapred with … Continue reading

## A relative of the approachability ideal, diamond and non-saturation

Abstract: Let $\lambda$ denote a singular cardinal. Zeman, improving a previous result of Shelah, proved that $\square^*_\lambda$ together with $2^\lambda=\lambda^+$ implies $\diamondsuit_S$ for every $S\subseteq\lambda^+$ that reflects stationarily often. In this paper, for a subset $S\subset\lambda^+$, a normal subideal of … Continue reading