### Archives

### Recent blog posts

- Genearlizations of Martin’s Axiom and the well-met condition January 11, 2015
- Many diamonds from just one January 6, 2015
- Happy new jewish year! September 24, 2014
- Square principles April 19, 2014
- Partitioning the club guessing January 22, 2014
- Walk on countable ordinals: the characteristics December 1, 2013
- Polychromatic colorings November 26, 2013
- Universal binary sequences November 14, 2013

### Keywords

sap Forcing Erdos-Hajnal graphs stationary reflection PFA ccc Cohen real polarized partition relation weak square Selective Ultrafilter Cardinal function Prikry-type forcing Cardinal Invariants weak diamond Rock n' Roll Mandelbrot set Constructible Universe Erdos Cardinal free Boolean algebra Minimal Walks projective Boolean algebra Reduced Power Whitehead Problem very good scale Absoluteness tensor product graph Hereditarily Lindelöf space Ascent Path incompactness b-scale L-space diamond star approachability ideal middle diamond Uniformization Almost-disjoint famiy Hedetniemi's conjecture Small forcing Diamond stationary hitting Ostaszewski square Prevalent singular cardinals square Almost countably chromatic Dushnik-Miller Shelah's Strong Hypothesis OCA Square-Brackets Partition Relations Antichain PFA(S)[S] Aronszajn tree Sakurai's Bell inequality Rado's conjecture Singular Cofinality Martin's Axiom Singular cardinals combinatorics Large Cardinals Kurepa Hypothesis Forcing Axioms Successor of Regular Cardinal Axiom R Non-saturation Generalized Clubs Successor of Singular Cardinal Poset Knaster Almost Souslin Partition Relations Souslin Tree Singular Density S-Space Universal Sequences reflection principles Club Guessing Microscopic Approach Foundations P-Ideal Dichotomy Chromatic number Weakly compact cardinal Rainbow sets

# Tag Archives: 03E35

## Chromatic numbers of graphs – large gaps

Abstract. We say that a graph $G$ is $(\aleph_0,\kappa)$-chromatic if $\text{Chr}(G)=\kappa$, while $\text{Chr}(G’)\le\aleph_0$ for any subgraph $G’$ of $G$ of size $<|G|$. The main result of this paper reads as follows. If $\square_\lambda+\text{CH}_\lambda$ holds for a given uncountable cardinal $\lambda$, … Continue reading

Posted in Publications
Tagged 03E35, 05C15, 05C63, Almost countably chromatic, Chromatic number, incompactness, Ostaszewski square
5 Comments

## Jensen’s diamond principle and its relatives

This is chapter 6 in the book Set Theory and Its Applications (ISBN: 0821848127). Abstract: We survey some recent results on the validity of Jensen’s diamond principle at successor cardinals. We also discuss weakening of this principle such as club … Continue reading

Posted in Open Problems, Publications
Tagged 03E05, 03E35, 03E50, approachability ideal, Club Guessing, Diamond, diamond star, Non-saturation, sap, Souslin Tree, square, stationary hitting, Uniformization, Whitehead Problem
2 Comments

## A cofinality-preserving small forcing may introduce a special Aronszajn tree

Extended Abstract: Shelah proved that Cohen forcing introduces a Souslin tree; Jensen proved that a c.c.c. forcing may consistently add a Kurepa tree; Todorcevic proved that a Knaster poset may already force the Kurepa hypothesis; Irrgang introduced a c.c.c. notion … Continue reading

Posted in Publications
Tagged 03E04, 03E05, 03E35, Aronszajn tree, Small forcing, Successor of Singular Cardinal, weak square
Leave a comment

## Openly generated Boolean algebras and the Fodor-type reflection principle

Joint work with Sakaé Fuchino. Abstract: We prove that the Fodor-type Reflection Principle (FRP) is equivalent to the assertion that any Boolean algebra is openly generated if and only if it is $\aleph _2$-projective. Previously it was known that this … Continue reading

## The failure of diamond on a reflecting stationary set

Joint work with Moti Gitik. Abstract: It is shown that the failure of $\diamondsuit_S$, for a subset $S\subseteq\aleph_{\omega+1}$ that reflects stationarily often, is consistent with GCH and $\text{AP}_{\aleph_\omega}$, relatively to the existence of a supercompact cardinal. This should be comapred with … Continue reading

## A relative of the approachability ideal, diamond and non-saturation

Abstract: Let $\lambda$ denote a singular cardinal. Zeman, improving a previous result of Shelah, proved that $\square^*_\lambda$ together with $2^\lambda=\lambda^+$ implies $\diamondsuit_S$ for every $S\subseteq\lambda^+$ that reflects stationarily often. In this paper, for a subset $S\subset\lambda^+$, a normal subideal of … Continue reading

## On guessing generalized clubs at the successors of regulars

Abstract: Konig, Larson and Yoshinobu initiated the study of principles for guessing generalized clubs, and introduced a construction of an higher Souslin tree from the strong guessing principle. Complementary to the author’s work on the validity of diamond and non-saturation … Continue reading

## Antichains in partially ordered sets of singular cofinality

Abstract: In their paper from 1981, Milner and Sauer conjectured that for any poset $\mathbb P$, if $\text{cf}(\mathbb P)$ is a singular cardinal $\lambda$, then $\mathbb P$ must contain an antichain of size $\text{cf}(\lambda)$. The main result of of this … Continue reading

Posted in Publications
Tagged 03E04, 03E35, 06A07, Antichain, Poset, Singular Cofinality
Leave a comment

## The Ostaszewski square, and homogeneous Souslin trees

Abstract: Assume GCH and let $\lambda$ denote an uncountable cardinal. We prove that if $\square_\lambda$ holds, then this may be witnessed by a coherent sequence $\left\langle C_\alpha \mid \alpha<\lambda^+\right\rangle$ with the following remarkable guessing property: For every sequence $\langle A_i\mid i<\lambda\rangle$ … Continue reading

Posted in Publications
Tagged 03E05, 03E35, Club Guessing, Ostaszewski square, Souslin Tree
2 Comments