### Archives

### Recent blog posts

- Prikry forcing may add a Souslin tree June 12, 2016
- The reflection principle $R_2$ May 20, 2016
- Prolific Souslin trees March 17, 2016
- Genearlizations of Martin’s Axiom and the well-met condition January 11, 2015
- Many diamonds from just one January 6, 2015
- Happy new jewish year! September 24, 2014
- Square principles April 19, 2014
- Partitioning the club guessing January 22, 2014

### Keywords

weak square Fast club Microscopic Approach OCA Club Guessing sap Hereditarily Lindelöf space reflection principles 05D10 20M14 diamond star Large Cardinals 11P99 free Boolean algebra Square-Brackets Partition Relations Forcing Diamond tensor product graph Ostaszewski square Fat stationary set square PFA Erdos Cardinal Rainbow sets Reduced Power stationary hitting Partition Relations Minimal Walks incompactness stationary reflection projective Boolean algebra Universal Sequences b-scale Cardinal Invariants Small forcing Chang's conjecture Hedetniemi's conjecture middle diamond S-Space Chromatic number Almost-disjoint famiy L-space Forcing Axioms 05A17 Kurepa Hypothesis Prevalent singular cardinals Antichain Generalized Clubs Commutative cancellative semigroups Singular cardinals combinatorics very good scale Almost countably chromatic approachability ideal Dushnik-Miller ccc Rock n' Roll Successor of Singular Cardinal Absoluteness Erdos-Hajnal graphs Singular Density Foundations Aronszajn tree xbox Souslin Tree Non-saturation Martin's Axiom coloring number weak diamond Cardinal function HOD Singular Cofinality polarized partition relation Prikry-type forcing Cohen real Mandelbrot set Poset Singular coﬁnality Ascent Path Parameterized proxy principle Almost Souslin Uniformization Selective Ultrafilter Jonsson cardinal Coherent tree Constructible Universe Fodor-type reflection Axiom R Weakly compact cardinal Shelah's Strong Hypothesis P-Ideal Dichotomy Rado's conjecture Knaster PFA(S)[S] Slim tree Successor of Regular Cardinal Hindman's Theorem Stevo Todorcevic Sakurai's Bell inequality Whitehead Problem

# Tag Archives: 03E35

## Reflection on the coloring and chromatic numbers

Joint work with Chris Lambie-Hanson. Abstract. We prove that reflection of the coloring number of a graph is consistent with non-reflection of the chromatic number. Moreover, it is proved that incompactness for the chromatic number of graphs (with arbitrarily large … Continue reading

## Strong failures of higher analogs of Hindman’s Theorem

Joint work with David J. Fernández Bretón. Abstract. We show that various analogs of Hindman’s Theorem fail in a strong sense when one attempts to obtain uncountable monochromatic sets: Theorem 1. There exists a colouring $c:\mathbb R\rightarrow\mathbb Q$, such that … Continue reading

## Higher Souslin trees and the GCH, revisited

Abstract. It is proved that for every uncountable cardinal $\lambda$, GCH+$\square(\lambda^+)$ entails the existence of a $\text{cf}(\lambda)$-complete $\lambda^+$-Souslin tree. In particular, if GCH holds and there are no $\aleph_2$-Souslin trees, then $\aleph_2$ is weakly compact in Godel’s constructible universe, improving … Continue reading

Posted in Preprints, Souslin Hypothesis
Tagged 03E05, 03E35, Souslin Tree, square, Weakly compact cardinal, xbox
15 Comments

## A Microscopic approach to Souslin-tree constructions. Part I

Joint work with Ari Meir Brodsky. Abstract. We propose a parameterized proxy principle from which $\kappa$-Souslin trees with various additional features can be constructed, regardless of the identity of $\kappa$. We then introduce the microscopic approach, which is a simple … Continue reading

Posted in Preprints, Souslin Hypothesis
Tagged 03E05, 03E35, 03E65, 05C05, Coherent tree, Diamond, Microscopic Approach, Parameterized proxy principle, Slim tree, Souslin Tree, square, xbox
3 Comments

## Reduced powers of Souslin trees

Joint work with Ari Meir Brodsky. Abstract. We study the relationship between a $\kappa$-Souslin tree $T$ and its reduced powers $T^\theta/\mathcal U$. Previous works addressed this problem from the viewpoint of a single power $\theta$, whereas here, tools are developed … Continue reading

## Same Graph, Different Universe

Abstract. May the same graph admit two different chromatic numbers in two different universes? how about infinitely many different values? and can this be achieved without changing the cardinals structure? In this paper, it is proved that in Godel’s constructible … Continue reading

Posted in Infinite Graphs, Publications
Tagged 03E35, 05C15, 05C63, approachability ideal, Chromatic number, Constructible Universe, Forcing, Ostaszewski square
10 Comments

## Chromatic numbers of graphs – large gaps

Abstract. We say that a graph $G$ is $(\aleph_0,\kappa)$-chromatic if $\text{Chr}(G)=\kappa$, while $\text{Chr}(G’)\le\aleph_0$ for any subgraph $G’$ of $G$ of size $<|G|$. The main result of this paper reads as follows. If $\square_\lambda+\text{CH}_\lambda$ holds for a given uncountable cardinal $\lambda$, … Continue reading

Posted in Compactness, Infinite Graphs, Publications
Tagged 03E35, 05C15, 05C63, Almost countably chromatic, Chromatic number, incompactness, Ostaszewski square
6 Comments

## Jensen’s diamond principle and its relatives

This is chapter 6 in the book Set Theory and Its Applications (ISBN: 0821848127). Abstract: We survey some recent results on the validity of Jensen’s diamond principle at successor cardinals. We also discuss weakening of this principle such as club … Continue reading

## A cofinality-preserving small forcing may introduce a special Aronszajn tree

Extended Abstract: Shelah proved that Cohen forcing introduces a Souslin tree; Jensen proved that a c.c.c. forcing may consistently add a Kurepa tree; Todorcevic proved that a Knaster poset may already force the Kurepa hypothesis; Irrgang introduced a c.c.c. notion … Continue reading

Posted in Publications, Squares and Diamonds
Tagged 03E04, 03E05, 03E35, Aronszajn tree, Small forcing, Successor of Singular Cardinal, weak square
Leave a comment

## Openly generated Boolean algebras and the Fodor-type reflection principle

Joint work with Sakaé Fuchino. Abstract: We prove that the Fodor-type Reflection Principle (FRP) is equivalent to the assertion that any Boolean algebra is openly generated if and only if it is $\aleph _2$-projective. Previously it was known that this … Continue reading