Chain conditions of products, and weakly compact cardinals

Abstract.  The history of productivity of the $\kappa$-chain condition in partial orders, topological spaces, or Boolean algebras is surveyed, and its connection to the set-theoretic notion of a weakly compact cardinal is highlighted. Then, it is proved that for every regular cardinal $\kappa>\aleph_1$, the principle $\square(\kappa)$ is equivalent to the existence of a certain strong coloring $c:[\kappa]^2\rightarrow\kappa$ for which the family of fibers $\mathcal T(c)$ is a nonspecial $\kappa$-Aronszajn tree.

The theorem follows from an analysis of  a new characteristic function for walks on ordinals, and implies in particular that if  the $\kappa$-chain condition is productive for a given regular cardinal $\kappa>\aleph_1$, then $\kappa$ is weakly compact in some inner model of ZFC. This provides a partial converse to the fact that if $\kappa$ is a weakly compact cardinal, then the $\kappa$-chain condition is productive.


[No arXiv entry][No related presentations]

Citation information:

A. Rinot, Chain conditions of products, and weakly compact cardinals, Bull. Symbolic Logic, 20(3): 293-314, 2014.

This entry was posted in Partition Relations, Publications and tagged , , , , , . Bookmark the permalink.

2 Responses to Chain conditions of products, and weakly compact cardinals

  1. Mohammad says:

    Is it known if for inaccessible $\kappa, \square(\kappa)+GCH$ implies the existence of a $\kappa-$Souslin tree?

    I was thinking maybe your new characterization of $\square(\kappa)$ can be used to discuss this problem.


  2. Pingback: The reflection principle $R_2$ | Assaf Rinot

Leave a Reply

Your email address will not be published. Required fields are marked *