**Abstract.** If $\lambda,\kappa$ are regular cardinals, $\lambda>\kappa^+$, and $E^\lambda_{\ge\kappa}$ admits a nonreflecting stationary set, then $\text{Pr}_1(\lambda,\lambda,\lambda,\kappa)$ holds.

(Recall that $\text{Pr}_1(\lambda,\lambda,\lambda,\kappa)$ asserts the existence of a coloring $d:[\lambda]^2\rightarrow\lambda$ such that for any family $\mathcal A\subseteq[\lambda]^{<\kappa}$ of size $\lambda$, consisting of pairwise disjoint sets, and every color $\gamma<\lambda$, there exist $a,b\in\mathcal A$ with $\sup(a)<\min(b)$ satisfying $d[a\times b]=\{\gamma\}$.)

**Downloads:**

**Citation information:**

A. Rinot, *Complicated Colorings*, Math. Res. Lett., 21(6): 1367–1388, 2014.

Submitted to

Mathematical Research Letters, January 2014.Accepted, September 2014.

0 likes

Pingback: Prolific Souslin trees | Assaf Rinot