Author Archives: Assaf Rinot

A new small Dowker space

Joint work with Roy Shalev and Stevo Todorcevic. Abstract. It is proved that if there exists a Luzin set, or if either the stick principle or $\diamondsuit(\mathfrak b)$ hold, then an instance of the guessing principle $\clubsuit_{AD}$ holds at the … Continue reading

Posted in Squares and Diamonds, Topology | Tagged , , , | 1 Comment

Was Ulam right? II: Small width and general ideals

Joint work with Tanmay Inamdar. Abstract. We continue our study of Sierpinski-type colourings. In contrast to the prequel paper, we focus here on colourings for ideals stratified by their completeness degree. In particular, improving upon Ulam’s theorem and its extension … Continue reading

Posted in Partition Relations, Publications | Tagged , , , , , , , | 1 Comment

MFO workshop in Set Theory, January 2022

I gave an invited talk at the Set Theory meeting in Obwerwolfach, January 2022. Talk Title: A dual of Juhasz’ question Abstract: Juhasz asked whether $\clubsuit$ implies the existence of a Souslin tree. Here we settle the dual problem of … Continue reading

Posted in Invited Talks | Tagged , | Comments Off on MFO workshop in Set Theory, January 2022

Complicated colorings, revisited

Joint work with Jing Zhang. Abstract. In a paper from 1997, Shelah asked whether $Pr_1(\lambda^+,\lambda^+,\lambda^+,\lambda)$ holds for every inaccessible cardinal $\lambda$. Here, we prove that an affirmative answer follows from $\square(\lambda^+)$.  Furthermore, we establish that for every pair $\chi<\kappa$ of … Continue reading

Posted in Partition Relations | Tagged , | 1 Comment

Sigma-Prikry forcing III: Down to Aleph_omega

Joint work with Alejandro Poveda and Dima Sinapova. Abstract. We prove the consistency of the failure of the singular cardinals hypothesis at $\aleph_\omega$ together with the reflection of all stationary subsets of $\aleph_{\omega+1}$. This shows that two classical results of … Continue reading

Posted in Compactness, Publications, Singular Cardinals Combinatorics | Tagged , , | 1 Comment

Was Ulam right? I: Basic theory and subnormal ideals

Joint work with Tanmay Inamdar. Abstract. We introduce various coloring principles which generalize the so-called onto mapping principle of Sierpinski to larger cardinals and general ideals. We prove that these principles capture the notion of an Ulam matrix and allow … Continue reading

Posted in Partition Relations | Tagged , , , , , , , , , , , | 1 Comment

Knaster and friends III: Subadditive colorings

Joint work with Chris Lambie-Hanson. Abstract. We continue our study of strongly unbounded colorings, this time focusing on subadditive maps. In Part I of this series, we showed that, for many pairs of infinite cardinals $\theta < \kappa$, the existence … Continue reading

Posted in Partition Relations, Publications | Tagged , , , , , , , , | 1 Comment

Strongest transformations

Joint work with Jing Zhang. Abstract. We continue our study of maps transforming high-dimensional complicated objects into squares of stationary sets. Previously, we proved that many such transformations exist in ZFC, and here we address the consistency of the strongest … Continue reading

Posted in Partition Relations, Publications | Tagged , , , , , , | 2 Comments

On the ideal J[kappa]

Abstract. Motivated by a question from a recent paper by Gilton, Levine and Stejskalova, we obtain a new characterization of the ideal $J[\kappa]$, from which we confirm that $\kappa$-Souslin trees exist in various models of interest. As a corollary we … Continue reading

Posted in Publications, Souslin Hypothesis | Tagged , , | 1 Comment

Ramsey theory over partitions III: Strongly Luzin sets and partition relations

Joint work with Menachem Kojman and Juris Steprāns. Abstract.  The strongest type of coloring of pairs of countable ordinals, gotten by Todorcevic from a strongly Luzin set, is shown to be equivalent to the existence of a nonmeager set of … Continue reading

Posted in Partition Relations, Publications | Tagged , , , , , , , , , , | 1 Comment