Category Archives: Open Problems

Dushnik-Miller for regular cardinals (part 1)

This is the first out of a series of posts on the following theorem. Theorem (Erdos-Dushnik-Miller, 1941). For every infinite cardinal $\lambda$, we have: $$\lambda\rightarrow(\lambda,\omega)^2.$$ Namely, for any coloring $c:[\lambda]^2\rightarrow\{0,1\}$ there exists either a subset $A\subseteq \lambda$ of order-type $\lambda$ with … Continue reading

Posted in Blog, Expository, Open Problems | Tagged , | 19 Comments

The order-type of clubs in a square sequence

Recall Jensen’s notion of square: Definition (Jensen): For an infinite cardinal $\lambda$, $\square_\lambda$ asserts the existence of a sequence $\overrightarrow C=\left\langle C_\alpha\mid\alpha\in\text{acc}(\lambda^+)\right\rangle$ such that for every limit $\alpha<\lambda^+$: $C_\alpha$ is a club subset of $\alpha$ of order-type $\le\lambda$; if $\beta\in\text{acc}(C_\alpha)$, … Continue reading

Posted in Blog, Open Problems | Tagged | 12 Comments

Jensen’s diamond principle and its relatives

This is chapter 6 in the book Set Theory and Its Applications (ISBN: 0821848127). Abstract: We survey some recent results on the validity of Jensen’s diamond principle at successor cardinals. We also discuss weakening of this principle such as club … Continue reading

Posted in Open Problems, Publications, Squares and Diamonds | Tagged , , , , , , , , , , , , , | 8 Comments