Author Archives: Assaf Rinot

Inclusion modulo nonstationary

Joint work with Gabriel Fernandes and Miguel Moreno. Abstract. A classical theorem of Hechler asserts that the structure $\left(\omega^\omega,\le^*\right)$ is universal in the sense that for any $\sigma$-directed poset $\mathbb P$ with no maximal element, there is a ccc forcing … Continue reading

Posted in Generalized Descriptive Set Theory, Publications, Squares and Diamonds | Tagged , , , | 1 Comment

50 Years of Set Theory in Toronto, May 2019

I gave an invited talk at the 50 Years of Set Theory in Toronto meeting, Fields Institute for Research in Mathematical Sciences, May 2019. Talk Title: Analytic quasi-orders and two forms of diamond Abstract: We study Borel reduction of equivalence relations … Continue reading

Posted in Invited Talks | Tagged , , | 1 Comment

Partitioning a reflecting stationary set

Joint work with Maxwell Levine. Abstract. We address the question of whether a reflecting stationary set may be partitioned into two or more reflecting stationary subsets, providing various affirmative answers in ZFC. As an application to singular cardinals combinatorics, we infer … Continue reading

Posted in Publications, Singular Cardinals Combinatorics | Tagged , , , , , | 1 Comment

4th Arctic Set Theory Workshop, January 2019

I gave an invited talk at the Arctic Set Theory Workshop 4 in Kilpisjärvi, January 2019. Talk Title: Splitting a stationary set: Is there another way? Abstract: Motivated by a problem in pcf theory, we seek for a new way … Continue reading

Posted in Invited Talks | Tagged , , , | Comments Off on 4th Arctic Set Theory Workshop, January 2019

Souslin trees at successors of regular cardinals

Abstract. We present a weak sufficient condition for the existence of Souslin trees at successor of regular cardinals. The result is optimal and simultaneously improves an old theorem of Gregory and a more recent theorem of the author. Downloads: Citation … Continue reading

Posted in Publications, Souslin Hypothesis | Tagged , | 1 Comment

11th Young Set Theory Workshop, June 2018

I gave a 4-lecture tutorial at the 11th Young Set Theory Workshop, Lausanne, June 2018. Title: In praise of C-sequences. Abstract. Ulam and Solovay showed that any stationary set may be split into two. Is it also the case that … Continue reading

Posted in Invited Talks | Tagged , , , , , , | Leave a comment

Knaster and friends I: Closed colorings and precalibers

Joint work with Chris Lambie-Hanson. Abstract. The productivity of the $\kappa$-chain condition, where $\kappa$ is a regular, uncountable cardinal, has been the focus of a great deal of set-theoretic research. In the 1970s, consistent examples of $\kappa$-cc posets whose squares … Continue reading

Posted in Partition Relations, Publications | Tagged , , , , , , | 2 Comments

A remark on Schimmerling’s question

Joint work with Ari Meir Brodsky. Abstract. Schimmerling asked whether $\square^*_\lambda$ together with GCH entails the existence of a $\lambda^+$-Souslin tree, for a singular cardinal $\lambda$. Here, we provide an affirmative answer under the additional assumption that there exists a … Continue reading

Posted in Publications, Souslin Hypothesis | Tagged , , , , , , , , , , | 1 Comment

Weak square and stationary reflection

Joint work with Gunter Fuchs. Abstract. It is well-known that the square principle $\square_\lambda$ entails the existence of a non-reflecting stationary subset of $\lambda^+$, whereas the weak square principle $\square^*_\lambda$ does not. Here we show that if $\mu^{cf(\lambda)}<\lambda$ for all $\mu<\lambda$, … Continue reading

Posted in Publications, Squares and Diamonds | Tagged , , , , , , | Leave a comment

A strong form of König’s lemma

A student proposed to me the following strong form of König’s lemma: Conjecture. Suppose that $G=(V,E)$ is a countable a graph, and there is a partition of $V$ into countably many pieces $V=\bigcup_{n<\omega}V_n$, such that: for all $n<\omega$, $V_n$ is … Continue reading

Posted in Blog | 2 Comments