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In [6] Prikry introduced a rew forcing notion. Using a normal measure U on , forcing by P
adds and w-sequence 7, cofinal in k. The forcing notion P has the following properties:

(i) The direct extension lemma. For every sentence ¢, every condition p € P can be extended to

g € P, without imposing new elements on 7, and g decides ¢.

(ii) An w-sequence 7, cofinal in x, is generic over P iff every X € U contains a final segment of 7.
(iii) If 7 is generic over P, then ~very subsequence of T is generic over P.

Using higher measurable czrdinals for which o(x) < x Magidor [3] has generalized Prikry’s
forcing to introduce longer closec sequences cofinal in . Let Mitchell [4] has shown that Magidor’s
procedure can be generalized whenever o(x) < k*. But Magidor forcing shares only property (i)
from Prikry forcing. Then Radin [7] has generalized Magidor forcing further, using highly closed-
elementary embeddings. His forcing has property (i) too and property (iii) if x is hyper measurable.
Using k much weaker than o(x) = x, we introduce a forcing notion with a “short” generic sequence
closed unbounded in x (short means: of order type w™ (n < w)) and the forcing notion P has all
properties (i)-(iii) as Prikry forcing.

Then we apply our forcing rotion to prove some consistency results concerning partition rela-

tions. To state our theorems we need some definitions:

Definition 0.1. o™(k) (the n** measurability order of x) is defined by induction on n < w:
0%(k) = k.

o™ (k) = o(0™(k)) (o(u) is the usual Mitchell’s order of measurability).

e



Definition 0.2. & e ()% (x :c_:_’ (p)%) stands for

“Every definable function f : [k]* — A has a homogeneous sequence (which is closed)

of order type u”.

QOur main results are

Theorem 1. Let n be a natural number, n > 2.

If Con(ZFC + 3x(o™(k) = 2)) then Con(ZFC + ¥, % (w™)e")-

Theorem 2. Let n be a natural number, n > 1.
If Con(ZFC + 3x(0"(x) = 2)) “hen Con(ZFC + ¥ — (™).

Remarks.

a) The case for n = 1 in Theorem 2 has been proved in [2].

b) Spector [8] has proved in Con(3k(o(x) = 1)) iff Con(R; oy (w)%,) and from [2] we known
that Con(3k(o(k) = 2)) iff Con(®; = (w? ),";:) Our Theorem 2 is one direction toward the
proof that there are jumps in the consistency strength of partition relations which deal with
w"-sequence for n > 2.

¢) In [1] we have proved that Con (R, ror L &) implies Con(3x(o(x) > 1)), thus w is another
jump in the pattern of the consistency strength.
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