Tag Archives: Uniformization

Generalizations of Martin’s Axiom and the well-met condition

Recall that Martin’s Axiom asserts that for every partial order $\mathbb P$ satisfying c.c.c., and for any family $\mathcal D$ of $<2^{\aleph_0}$ many dense subsets of $\mathbb P$, there exists a directed subset $G$ of $\mathbb P$ such that $G\cap … Continue reading

Posted in Blog, Expository | Tagged , , | Leave a comment

The uniformization property for $\aleph_2$

Given a subset of a regular uncountable cardinal $S\subseteq\kappa$, $UP_S$ (read: “the uniformization property holds for $S$”) asserts that for every sequence $\overrightarrow f=\langle f_\alpha\mid \alpha\in S\rangle$ satisfying for all $\alpha\in S$: $f_\alpha$ is a 2-valued function; $\text{dom}(f_\alpha)$ is a … Continue reading

Posted in Blog, Expository | Tagged | Leave a comment

c.c.c. forcing without combinatorics

In this post, we shall discuss a short paper by Alan Mekler from 1984, concerning a non-combinatorial verification of the c.c.c. property for forcing notions. Recall that a notion of forcing $\mathbb P$ is said to satisfy the c.c.c. iff … Continue reading

Posted in Blog, Expository | Tagged , | 5 Comments

Jensen’s diamond principle and its relatives

This is chapter 6 in the book Set Theory and Its Applications (ISBN: 0821848127). Abstract: We survey some recent results on the validity of Jensen’s diamond principle at successor cardinals. We also discuss weakening of this principle such as club … Continue reading

Posted in Open Problems, Publications, Squares and Diamonds | Tagged , , , , , , , , , , , , , | 8 Comments

On guessing generalized clubs at the successors of regulars

Abstract: Konig, Larson and Yoshinobu initiated the study of principles for guessing generalized clubs, and introduced a construction of an higher Souslin tree from the strong guessing principle. Complementary to the author’s work on the validity of diamond and non-saturation … Continue reading

Posted in Publications, Souslin Hypothesis, Squares and Diamonds | Tagged , , , , , , , , , , | 2 Comments