Tag Archives: Singular cardinals combinatorics

More notions of forcing add a Souslin tree

Joint work with Ari Meir Brodsky. Abstract.   An $\aleph_1$-Souslin tree is a complicated combinatorial object whose existence cannot be decided on the grounds of ZFC alone. But 15 years after Tennenbaum and independently Jech devised notions of forcing for introducing … Continue reading

Posted in Preprints, Souslin Hypothesis | Tagged , , , , | 1 Comment

Ordinal definable subsets of singular cardinals

Joint work with James Cummings, Sy-David Friedman, Menachem Magidor, and Dima Sinapova. Abstract. A remarkable result by Shelah states that if $\kappa$ is a singular strong limit cardinal of uncountable cofinality then there is a subset $x$ of $\kappa$ such … Continue reading

Posted in Preprints, Singular Cardinals Combinatorics | Tagged , | 1 Comment

Dushnik-Miller for singular cardinals (part 2)

In the first post on this subject, we provided a proof of $\lambda\rightarrow(\lambda,\omega+1)^2$ for every regular uncountable cardinal $\lambda$. In the second post, we provided a proof of $\lambda\rightarrow(\lambda,\omega)^2$ for every singular cardinal $\lambda$, and showed that $\lambda\rightarrow(\lambda,\omega+1)^2$ fails for every … Continue reading

Posted in Blog, Expository | Tagged , , | 27 Comments

Dushnik-Miller for singular cardinals (part 1)

Continuing the previous post, let us now prove the following. Theorem (Erdos-Dushnik-Miller, 1941). For every singular cardinal λ, we have: $$\lambda\rightarrow(\lambda,\omega)^2.$$ Proof. Suppose that $\lambda$ is a singular cardinal, and $c:[\lambda]^2\rightarrow\{0,1\}$ is a given coloring. For any ordinal $\alpha<\lambda$, denote … Continue reading

Posted in Blog, Expository | Tagged , | 3 Comments

On topological spaces of singular density and minimal weight

Abstract: We introduce a weakening of the Generalized Continuum Hypothesis, which we will refer to as the Prevalent Singular cardinals Hypothesis (PSH), and show it implies that every topological space of density and weight $\aleph_{\omega_1}$ is not hereditarily Lindelöf. The assumption … Continue reading

Posted in Publications, Topology | Tagged , , , , , , | Leave a comment

Young Researchers in Set Theory, March 2011

These are the slides of a talk I gave at the Young Researchers in Set Theory 2011 meeting (Königswinter, 21–25 March 2011). Talk Title: Around Jensen’s square principle Abstract: Jensen‘s square principle for a cardinal $\lambda$ asserts the existence of a particular ladder … Continue reading

Posted in Invited Talks | Tagged , , , , , | Leave a comment

Workshop on Set Theory and its Applications, February 2007

These are the slides of a talk given at the Workshop on Set Theory and its Applications workshop (Weizmann Institute, February 19, 2007). Talk Title: Nets of spaces having singular density Abstract: The weight of a topological space X is the … Continue reading

Posted in Invited Talks | Tagged , , , | Leave a comment