Tag Archives: P-Ideal Dichotomy

The S-space problem, and the cardinal invariant $\mathfrak p$

Recall that an $S$-space is a regular hereditarily separable topological space which is not hereditarily Lindelöf. Do they exist? Consistently, yes. However, Szentmiklóssy proved that compact $S$-spaces do not exist, assuming Martin’s Axiom. Pushing this further, Todorcevic later proved that … Continue reading

Posted in Blog, Expository, Open Problems | Tagged , , , | 4 Comments

The P-Ideal Dichotomy and the Souslin Hypothesis

John Krueger is visiting Toronto these days, and in a conversation today, we asked ourselves how do one prove the Abraham-Todorcevic theorem that PID implies SH. Namely, that the next statement implies that there are no Souslin trees: Definition. The … Continue reading

Posted in Blog, Expository | Tagged , | Leave a comment

Dushnik-Miller for regular cardinals (part 3)

Here is what we already know about the Dushnik-Miller theorem in the case of $\omega_1$ (given our earlier posts on the subject): $\omega_1\rightarrow(\omega_1,\omega+1)^2$ holds in ZFC; $\omega_1\rightarrow(\omega_1,\omega+2)^2$ may consistently fail; $\omega_1\rightarrow(\omega_1,\omega_1)^2$ fails in ZFC. In this post, we shall provide … Continue reading

Posted in Blog, Expository | Tagged , , | 6 Comments