Tag Archives: Microscopic Approach

A remark on Schimmerling’s question

Joint work with Ari Meir Brodsky. Abstract. Schimmerling asked whether $\square^*_\lambda$ together with GCH entails the existence of a $\lambda^+$-Souslin tree, for a singular cardinal $\lambda$. Here, we provide an affirmative answer under the additional assumption that there exists a … Continue reading

Posted in Preprints, Souslin Hypothesis | Tagged , , , , , , , , , , | Leave a comment

A Microscopic approach to Souslin-tree constructions. Part I

Joint work with Ari Meir Brodsky. Abstract.  We propose a parameterized proxy principle from which $\kappa$-Souslin trees with various additional features can be constructed, regardless of the identity of $\kappa$. We then introduce the microscopic approach, which is a simple … Continue reading

Posted in Publications, Souslin Hypothesis | Tagged , , , , , , , , , , , | 4 Comments

Reduced powers of Souslin trees

Joint work with Ari Meir Brodsky. Abstract. We study the relationship between a $\kappa$-Souslin tree $T$ and its reduced powers $T^\theta/\mathcal U$. Previous works addressed this problem from the viewpoint of a single power $\theta$, whereas here, tools are developed … Continue reading

Posted in Publications, Souslin Hypothesis | Tagged , , , , , , , , , , , | 2 Comments

Forcing and its Applications Retrospective Workshop, April 2015

I gave an invited talk at Forcing and its Applications Retrospective Workshop, Toronto, April 1st, 2015.  Title: A microscopic approach to Souslin trees constructions Abstract: We present an approach to construct $\kappa$-Souslin trees that is insensitive to the identity of … Continue reading

Posted in Invited Talks | Tagged , , | Leave a comment