Tag Archives: incompactness

MFO workshop in Set Theory, February 2017

I gave an invited talk at the Set Theory workshop in Obwerwolfach, February 2017. Talk Title: Coloring vs. Chromatic. Abstract: In a joint work with Chris Lambie-Hanson, we study the interaction between compactness for the chromatic number (of graphs) and … Continue reading

Posted in Invited Talks | Tagged , , , | Leave a comment

Reflection on the coloring and chromatic numbers

Joint work with Chris Lambie-Hanson. Abstract.  We prove that reflection of the coloring number of graphs is consistent with non-reflection of the chromatic number.  Moreover, it is proved that incompactness for the chromatic number of graphs (with arbitrarily large gaps) … Continue reading

Posted in Compactness, Preprints | Tagged , , , , , , , , , , , , | 1 Comment

Chromatic numbers of graphs – large gaps

Abstract. We say that a graph $G$ is $(\aleph_0,\kappa)$-chromatic if $\text{Chr}(G)=\kappa$, while $\text{Chr}(G’)\le\aleph_0$ for any subgraph $G’$ of $G$ of size $<|G|$. The main result of this paper reads as follows. If  $\square_\lambda+\text{CH}_\lambda$ holds for a given uncountable cardinal $\lambda$, … Continue reading

Posted in Compactness, Infinite Graphs, Publications | Tagged , , , , , , | 6 Comments