### Archives

### Recent blog posts

- Prikry forcing may add a Souslin tree June 12, 2016
- The reflection principle $R_2$ May 20, 2016
- Prolific Souslin trees March 17, 2016
- Generalizations of Martin’s Axiom and the well-met condition January 11, 2015
- Many diamonds from just one January 6, 2015
- Happy new jewish year! September 24, 2014
- Square principles April 19, 2014
- Partitioning the club guessing January 22, 2014

### Keywords

PFA Ascent Path Aronszajn tree Knaster tensor product graph P-Ideal Dichotomy Fat stationary set stationary hitting Sakurai's Bell inequality Dushnik-Miller Singular cardinals combinatorics ccc b-scale 11P99 Square-Brackets Partition Relations Cardinal Invariants Selective Ultrafilter Fodor-type reflection Stevo Todorcevic Distributive tree Absoluteness Forcing Cohen real sap Ostaszewski square Rainbow sets Rock n' Roll Successor of Singular Cardinal middle diamond reflection principles weak square Souslin Tree 05D10 Shelah's Strong Hypothesis Successor of Regular Cardinal Small forcing Foundations Singular Density Reduced Power Poset Constructible Universe Forcing Axioms 05A17 Uniformization incompactness Universal Sequences stationary reflection polarized partition relation square principles Microscopic Approach Postprocessing function Diamond S-Space Generalized Clubs HOD xbox Hedetniemi's conjecture Commutative cancellative semigroups Large Cardinals 20M14 Cardinal function Axiom R PFA(S)[S] Jonsson cardinal very good scale Almost Souslin Kurepa Hypothesis Weakly compact cardinal free Boolean algebra Antichain Chang's conjecture Whitehead Problem Fast club Minimal Walks Coherent tree Non-saturation Parameterized proxy principle weak diamond Uniformly coherent Rado's conjecture Hindman's Theorem Almost-disjoint famiy Erdos-Hajnal graphs Club Guessing projective Boolean algebra Nonspecial tree Martin's Axiom approachability ideal coloring number Slim tree square diamond star Prikry-type forcing Partition Relations L-space Singular coﬁnality Hereditarily Lindelöf space Almost countably chromatic Mandelbrot set OCA Chromatic number Erdos Cardinal Prevalent singular cardinals

# Tag Archives: Diamond

## A Microscopic approach to Souslin-tree constructions. Part I

Joint work with Ari Meir Brodsky. Abstract. We propose a parameterized proxy principle from which $\kappa$-Souslin trees with various additional features can be constructed, regardless of the identity of $\kappa$. We then introduce the microscopic approach, which is a simple … Continue reading

Posted in Publications, Souslin Hypothesis
Tagged 03E05, 03E35, 03E65, 05C05, Coherent tree, Diamond, Microscopic Approach, Parameterized proxy principle, Slim tree, Souslin Tree, square, xbox
4 Comments

## Putting a diamond inside the square

Abstract. By a 35-year-old theorem of Shelah, $\square_\lambda+\diamondsuit(\lambda^+)$ does not imply square-with-built-in-diamond_lambda for regular uncountable cardinals $\lambda$. Here, it is proved that $\square_\lambda+\diamondsuit(\lambda^+)$ is equivalent to square-with-built-in-diamond_lambda for every singular cardinal $\lambda$. Downloads: Citation information: A. Rinot, Putting a diamond inside … Continue reading

Posted in Publications, Squares and Diamonds
Tagged 03E05, 03E45, Diamond, square, Successor of Singular Cardinal
1 Comment

## Many diamonds from just one

Recall Jensen’s diamond principle over a stationary subset $S$ of a regular uncountable cardinal $\kappa$: there exists a sequence $\langle A_\alpha\mid \alpha\in S \rangle$ such that $\{\alpha\in S\mid A\cap\alpha=A_\alpha\}$ is stationary for every $A\subseteq\kappa$. Equivalently, there exists a sequence $\langle … Continue reading

## Variations on diamond

Jensen’s diamond principle has many equivalent forms. The translation between these forms is often straight-forward, but there is one form whose equivalence to the usual form is somewhat surprising, and Devlin’s translation from one to the other, seems a little … Continue reading

## The search for diamonds

Abstract: This is a review I wrote for the Bulletin of Symbolic Logic on the following papers: Saharon Shelah, Middle Diamond, Archive for Mathematical Logic, vol. 44 (2005), pp. 527–560. Saharon Shelah, Diamonds, Proceedings of the American Mathematical Society, vol. … Continue reading

Posted in Publications, Reviews, Squares and Diamonds
Tagged Diamond, middle diamond, weak diamond, weak square
1 Comment

## Jensen’s diamond principle and its relatives

This is chapter 6 in the book Set Theory and Its Applications (ISBN: 0821848127). Abstract: We survey some recent results on the validity of Jensen’s diamond principle at successor cardinals. We also discuss weakening of this principle such as club … Continue reading

## Shelah’s solution to Whitehead’s problem

Whitehead problem notes in hebrew : Table of contents Chapter 0 Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9 Chapter 10 Chapter 11 Chapter 12 References

## The failure of diamond on a reflecting stationary set

Joint work with Moti Gitik. Abstract: It is shown that the failure of $\diamondsuit_S$, for a subset $S\subseteq\aleph_{\omega+1}$ that reflects stationarily often, is consistent with GCH and $\text{AP}_{\aleph_\omega}$, relatively to the existence of a supercompact cardinal. This should be comapred with … Continue reading

## A relative of the approachability ideal, diamond and non-saturation

Abstract: Let $\lambda$ denote a singular cardinal. Zeman, improving a previous result of Shelah, proved that $\square^*_\lambda$ together with $2^\lambda=\lambda^+$ implies $\diamondsuit_S$ for every $S\subseteq\lambda^+$ that reflects stationarily often. In this paper, for a subset $S\subset\lambda^+$, a normal subideal of … Continue reading

## On guessing generalized clubs at the successors of regulars

Abstract: Konig, Larson and Yoshinobu initiated the study of principles for guessing generalized clubs, and introduced a construction of an higher Souslin tree from the strong guessing principle. Complementary to the author’s work on the validity of diamond and non-saturation … Continue reading