### Archives

### Recent blog posts

- Square principles April 19, 2014
- Partitioning the club guessing January 22, 2014
- Walk on countable ordinals: the characteristics December 1, 2013
- Polychromatic colorings November 26, 2013
- Universal binary sequences November 14, 2013
- Syndetic colorings with applications to S and L October 26, 2013
- Open coloring and the cardinal invariant $\mathfrak b$ October 8, 2013
- Gabriel Belachsan (14/5/1976 – 20/8/2013) August 20, 2013

### Keywords

reflection principles Constructible Universe Absoluteness Cardinal function tensor product graph free Boolean algebra Cohen real Chromatic number b-scale Small forcing stationary hitting stationary reflection Partition Relations polarized partition relation Dushnik-Miller Rainbow sets Kurepa Hypothesis Prikry-type forcing Aronszajn tree Square-Brackets Partition Relations PFA(S)[S] L-space Shelah's Strong Hypothesis Non-saturation Erdos-Hajnal graphs Almost countably chromatic sap approachability ideal Successor of Singular Cardinal Souslin Tree projective Boolean algebra Rock n' Roll Prevalent singular cardinals Rado's conjecture Antichain Foundations Forcing Axiom R diamond star Hedetniemi's conjecture Whitehead Problem Knaster Forcing Axioms Universal Sequences square OCA Successor of Regular Cardinal Uniformization Poset S-Space Hereditarily Lindelöf space very good scale P-Ideal Dichotomy Minimal Walks Ostaszewski square middle diamond Diamond Singular Cofinality weak square Cardinal Invariants Singular Density Almost-disjoint famiy Generalized Clubs incompactness Sakurai's Bell inequality Singular cardinals combinatorics PFA weak diamond Club Guessing Mandelbrot set Martin's Axiom Large Cardinals Erdos Cardinal### Name Dropping

Ace Billet Alan Mekler Albin L. Jones Alex Primavesi Alfred Tarski András Hajnal Benoit Mandelbrot Boban Velickovic Chen Meiri Chris Hadfield Ernest Schimmerling Fred Glavin Gabriel Belachsan Hiroshi Sakai Ilijas Farah Itay Neeman Jack Silver Jim Baumgartner John Krueger Judy Roitman Keith Devlin Menachem Magidor Mirna Dzamonja Moti Gitik Murray Bell Paul Erdős Paul Larson Richard Laver Ronald Jensen Saharon Shelah Sakaé Fuchino Stevo Todorcevic Teruyuki Yorioka Wacław Sierpiński

# Tag Archives: Club Guessing

## Partitioning the club guessing

In a recent paper, I am making use of the following fact. Theorem (Shelah, 1997). Suppose that $\kappa$ is an accessible cardinal (i.e., there exists a cardinal $\theta<\kappa$ such that $2^\theta\ge\kappa)$. Then there exists a sequence $\langle g_\delta:C_\delta\rightarrow\omega\mid \delta\in E^{\kappa^+}_\kappa\rangle$ … Continue reading

## Shelah’s approachability ideal (part 2)

In a previous post, we defined Shelah’s approachability ideal $I[\lambda]$. We remind the reader that a subset $S\subseteq\lambda$ is in $I[\lambda]$ iff there exists a collection $\{ \mathcal D_\alpha\mid\alpha<\lambda\}\subseteq\mathcal [\mathcal P(\lambda)]^{<\lambda}$ such that for club many $\delta\in S$, the union … Continue reading

Posted in Blog, Expository, Open Problems
Tagged approachability ideal, Club Guessing
Leave a comment

## Shelah’s approachability ideal (part 1)

Given an infinite cardinal $\lambda$, Shelah defines an ideal $I[\lambda]$ as follows. Definition (Shelah, implicit in here). A set $S$ is in $I[\lambda]$ iff $S\subseteq\lambda$ and there exists a collection $\{ \mathcal D_\alpha\mid\alpha<\lambda\}\subseteq\mathcal [\mathcal P(\lambda)]^{<\lambda}$, and some club $E\subseteq\lambda$, so … Continue reading

## An inconsistent form of club guessing

In this post, we shall present an answer (due to P. Larson) to a question by A. Primavesi concerning a certain strong form of club guessing. We commence with recalling Shelah’s concept of club guessing. Concept (Shelah). Given a regular … Continue reading

## Jensen’s diamond principle and its relatives

This is chapter 6 in the book Set Theory and Its Applications (ISBN: 0821848127). Abstract: We survey some recent results on the validity of Jensen’s diamond principle at successor cardinals. We also discuss weakening of this principle such as club … Continue reading

Posted in Open Problems, Publications
Tagged 03E05, 03E35, 03E50, approachability ideal, Club Guessing, Diamond, diamond star, Non-saturation, sap, Souslin Tree, square, stationary hitting, Uniformization, Whitehead Problem
2 Comments

## On guessing generalized clubs at the successors of regulars

Abstract: Konig, Larson and Yoshinobu initiated the study of principles for guessing generalized clubs, and introduced a construction of an higher Souslin tree from the strong guessing principle. Complementary to the author’s work on the validity of diamond and non-saturation … Continue reading

## Transforming rectangles into squares, with applications to strong colorings

Abstract: It is proved that every singular cardinal $\lambda$ admits a function $\textbf{rts}:[\lambda^+]^2\rightarrow[\lambda^+]^2$ that transforms rectangles into squares. That is, whenever $A,B$ are cofinal subsets of $\lambda^+$, we have $\textbf{rts}[A\circledast B]\supseteq C\circledast C$, for some cofinal subset $C\subseteq\lambda^+$. As a … Continue reading

## The Ostaszewski square, and homogeneous Souslin trees

Abstract: Assume GCH and let $\lambda$ denote an uncountable cardinal. We prove that if $\square_\lambda$ holds, then this may be witnessed by a coherent sequence $\left\langle C_\alpha \mid \alpha<\lambda^+\right\rangle$ with the following remarkable guessing property: For every sequence $\langle A_i\mid i<\lambda\rangle$ … Continue reading

Posted in Publications
Tagged 03E05, 03E35, Club Guessing, Ostaszewski square, Souslin Tree
2 Comments