Tag Archives: Club Guessing

Partitioning the club guessing

In a recent paper, I am making use of the following  fact. Theorem (Shelah, 1997). Suppose that $\kappa$ is an accessible cardinal (i.e., there exists a cardinal $\theta<\kappa$ such that $2^\theta\ge\kappa)$. Then there exists a sequence $\langle g_\delta:C_\delta\rightarrow\omega\mid \delta\in E^{\kappa^+}_\kappa\rangle$ … Continue reading

Posted in Blog, Expository, Open Problems | Tagged | Leave a comment

Shelah’s approachability ideal (part 2)

In a previous post, we defined Shelah’s approachability ideal $I[\lambda]$. We remind the reader that a subset $S\subseteq\lambda$ is in $I[\lambda]$ iff there exists a collection $\{ \mathcal D_\alpha\mid\alpha<\lambda\}\subseteq\mathcal [\mathcal P(\lambda)]^{<\lambda}$ such that for club many $\delta\in S$, the union … Continue reading

Posted in Blog, Expository, Open Problems | Tagged , | Leave a comment

Shelah’s approachability ideal (part 1)

Given an infinite cardinal $\lambda$, Shelah defines an ideal $I[\lambda]$ as follows. Definition (Shelah, implicit in here). A set $S$ is in $I[\lambda]$ iff $S\subseteq\lambda$ and there exists a collection $\{ \mathcal D_\alpha\mid\alpha<\lambda\}\subseteq\mathcal [\mathcal P(\lambda)]^{<\lambda}$, and some club $E\subseteq\lambda$, so … Continue reading

Posted in Blog, Expository | Tagged , | 1 Comment

An inconsistent form of club guessing

In this post, we shall present an answer (due to P. Larson) to a question by A. Primavesi concerning a certain strong form of club guessing. We commence with recalling Shelah’s concept of club guessing. Concept (Shelah). Given a regular … Continue reading

Posted in Blog, Open Problems | Tagged | 3 Comments

Jensen’s diamond principle and its relatives

This is chapter 6 in the book Set Theory and Its Applications (ISBN: 0821848127). Abstract: We survey some recent results on the validity of Jensen’s diamond principle at successor cardinals. We also discuss weakening of this principle such as club … Continue reading

Posted in Open Problems, Publications | Tagged , , , , , , , , , , , , , | 2 Comments

On guessing generalized clubs at the successors of regulars

Abstract: Konig, Larson and Yoshinobu initiated the study of principles for guessing generalized clubs, and introduced a construction of an higher Souslin tree from the strong guessing principle. Complementary to the author’s work on the validity of diamond and non-saturation … Continue reading

Posted in Publications | Tagged , , , , , , , , , , | 2 Comments

Transforming rectangles into squares, with applications to strong colorings

Abstract: It is proved that every singular cardinal  $\lambda$ admits a function $\textbf{rts}:[\lambda^+]^2\rightarrow[\lambda^+]^2$ that transforms rectangles into squares. That is, whenever $A,B$ are cofinal subsets of $\lambda^+$, we have $\textbf{rts}[A\circledast B]\supseteq C\circledast C$, for some cofinal subset $C\subseteq\lambda^+$. As a … Continue reading

Posted in Publications | Tagged , , , , | 1 Comment

The Ostaszewski square, and homogeneous Souslin trees

Abstract: Assume GCH and let $\lambda$ denote an uncountable cardinal. We prove that if $\square_\lambda$ holds, then this may be  witnessed by a coherent sequence $\left\langle C_\alpha \mid \alpha<\lambda^+\right\rangle$ with the following remarkable guessing property: For every sequence $\langle A_i\mid i<\lambda\rangle$ … Continue reading

Posted in Publications | Tagged , , , , | 2 Comments