### Archives

### Recent blog posts

- Genearlizations of Martin’s Axiom and the well-met condition January 11, 2015
- Many diamonds from just one January 6, 2015
- Happy new jewish year! September 24, 2014
- Square principles April 19, 2014
- Partitioning the club guessing January 22, 2014
- Walk on countable ordinals: the characteristics December 1, 2013
- Polychromatic colorings November 26, 2013
- Universal binary sequences November 14, 2013

### Keywords

Almost-disjoint famiy Chromatic number Club Guessing stationary hitting Foundations Successor of Regular Cardinal Square-Brackets Partition Relations Knaster Generalized Clubs Dushnik-Miller Cohen real incompactness weak diamond Coherent tree Prevalent singular cardinals middle diamond reflection principles Weakly compact cardinal Erdos Cardinal Rado's conjecture Small forcing Cardinal function Ostaszewski square Constructible Universe Diamond Prikry-type forcing sap Reduced Power Kurepa Hypothesis Souslin Tree Successor of Singular Cardinal S-Space approachability ideal Axiom R Rock n' Roll stationary reflection Almost countably chromatic P-Ideal Dichotomy Minimal Walks Partition Relations diamond star Rainbow sets free Boolean algebra b-scale Universal Sequences Shelah's Strong Hypothesis PFA Mandelbrot set very good scale PFA(S)[S] Large Cardinals Microscopic Approach square Forcing Erdos-Hajnal graphs Sakurai's Bell inequality polarized partition relation Antichain Martin's Axiom Poset Non-saturation Selective Ultrafilter Singular coﬁnality Whitehead Problem Forcing Axioms Parameterized proxy principle projective Boolean algebra Uniformization Singular Density ccc Almost Souslin Hereditarily Lindelöf space Aronszajn tree Cardinal Invariants Absoluteness tensor product graph Singular Cofinality Slim tree L-space Singular cardinals combinatorics weak square Hedetniemi's conjecture Ascent Path OCA

# Tag Archives: Club Guessing

## Partitioning the club guessing

In a recent paper, I am making use of the following fact. Theorem (Shelah, 1997). Suppose that $\kappa$ is an accessible cardinal (i.e., there exists a cardinal $\theta<\kappa$ such that $2^\theta\ge\kappa)$. Then there exists a sequence $\langle g_\delta:C_\delta\rightarrow\omega\mid \delta\in E^{\kappa^+}_\kappa\rangle$ … Continue reading

## Shelah’s approachability ideal (part 2)

In a previous post, we defined Shelah’s approachability ideal $I[\lambda]$. We remind the reader that a subset $S\subseteq\lambda$ is in $I[\lambda]$ iff there exists a collection $\{ \mathcal D_\alpha\mid\alpha<\lambda\}\subseteq\mathcal [\mathcal P(\lambda)]^{<\lambda}$ such that for club many $\delta\in S$, the union … Continue reading

Posted in Blog, Expository, Open Problems
Tagged approachability ideal, Club Guessing
Leave a comment

## Shelah’s approachability ideal (part 1)

Given an infinite cardinal $\lambda$, Shelah defines an ideal $I[\lambda]$ as follows. Definition (Shelah, implicit in here). A set $S$ is in $I[\lambda]$ iff $S\subseteq\lambda$ and there exists a collection $\{ \mathcal D_\alpha\mid\alpha<\lambda\}\subseteq\mathcal [\mathcal P(\lambda)]^{<\lambda}$, and some club $E\subseteq\lambda$, so … Continue reading

## An inconsistent form of club guessing

In this post, we shall present an answer (due to P. Larson) to a question by A. Primavesi concerning a certain strong form of club guessing. We commence with recalling Shelah’s concept of club guessing. Concept (Shelah). Given a regular … Continue reading

## Jensen’s diamond principle and its relatives

This is chapter 6 in the book Set Theory and Its Applications (ISBN: 0821848127). Abstract: We survey some recent results on the validity of Jensen’s diamond principle at successor cardinals. We also discuss weakening of this principle such as club … Continue reading

## On guessing generalized clubs at the successors of regulars

Abstract: Konig, Larson and Yoshinobu initiated the study of principles for guessing generalized clubs, and introduced a construction of an higher Souslin tree from the strong guessing principle. Complementary to the author’s work on the validity of diamond and non-saturation … Continue reading

## Transforming rectangles into squares, with applications to strong colorings

Abstract: It is proved that every singular cardinal $\lambda$ admits a function $\textbf{rts}:[\lambda^+]^2\rightarrow[\lambda^+]^2$ that transforms rectangles into squares. That is, whenever $A,B$ are cofinal subsets of $\lambda^+$, we have $\textbf{rts}[A\circledast B]\supseteq C\circledast C$, for some cofinal subset $C\subseteq\lambda^+$. As a … Continue reading

## The Ostaszewski square, and homogeneous Souslin trees

Abstract: Assume GCH and let $\lambda$ denote an uncountable cardinal. We prove that if $\square_\lambda$ holds, then this may be witnessed by a coherent sequence $\left\langle C_\alpha \mid \alpha<\lambda^+\right\rangle$ with the following remarkable guessing property: For every sequence $\langle A_i\mid i<\lambda\rangle$ … Continue reading

Posted in Publications, Souslin Hypothesis, Squares and Diamonds
Tagged 03E05, 03E35, Club Guessing, Ostaszewski square, Souslin Tree
2 Comments