### Archives

### Recent blog posts

- A strong form of König’s lemma October 21, 2017
- Prikry forcing may add a Souslin tree June 12, 2016
- The reflection principle $R_2$ May 20, 2016
- Prolific Souslin trees March 17, 2016
- Generalizations of Martin’s Axiom and the well-met condition January 11, 2015
- Many diamonds from just one January 6, 2015
- Happy new jewish year! September 24, 2014
- Square principles April 19, 2014

### Keywords

ccc Generalized Clubs PFA xbox Uniformization Prevalent singular cardinals Singular Density Whitehead Problem Cardinal Invariants Poset Successor of Regular Cardinal Fast club Successor of Singular Cardinal Hereditarily Lindelöf space square principles Commutative cancellative semigroups Microscopic Approach projective Boolean algebra Absoluteness Chang's conjecture S-Space Erdos-Hajnal graphs free Boolean algebra Almost-disjoint famiy OCA coloring number Shelah's Strong Hypothesis Diamond Constructible Universe Minimal Walks Forcing Axioms Erdos Cardinal stationary hitting Non-saturation middle diamond Reduced Power Singular cardinals combinatorics Nonspecial tree Singular coﬁnality Rainbow sets tensor product graph Small forcing PFA(S)[S] Slim tree Martin's Axiom Rock n' Roll Club Guessing Sakurai's Bell inequality Axiom R Cohen real Universal Sequences approachability ideal P-Ideal Dichotomy Distributive tree square polarized partition relation free Souslin tree Weakly compact cardinal Jonsson cardinal Chromatic number Selective Ultrafilter L-space weak square 05A17 Partition Relations Dushnik-Miller diamond star Almost Souslin Antichain Foundations sap super-Souslin tree Uniformly coherent Mandelbrot set Ascent Path Almost countably chromatic Kurepa Hypothesis Postprocessing function Souslin Tree 11P99 Parameterized proxy principle Coherent tree reflection principles Knaster incompactness Rado's conjecture stationary reflection HOD Stevo Todorcevic Square-Brackets Partition Relations Fat stationary set weak diamond Fodor-type reflection Aronszajn tree Luzin set Forcing Hedetniemi's conjecture Large Cardinals Prikry-type forcing Hindman's Theorem Cardinal function b-scale very good scale Ostaszewski square specializable Souslin tree

# Tag Archives: Club Guessing

## Distributive Aronszajn trees

Joint work with Ari Meir Brodsky. Abstract. Ben-David and Shelah proved that if $\lambda$ is a singular strong-limit cardinal and $2^\lambda=\lambda^+$, then $\square^*_\lambda$ entails the existence of a $\lambda$-distributive $\lambda^+$-Aronszajn tree. Here, it is proved that the same conclusion remains … Continue reading

## Partitioning the club guessing

In a recent paper, I am making use of the following fact. Theorem (Shelah, 1997). Suppose that $\kappa$ is an accessible cardinal (i.e., there exists a cardinal $\theta<\kappa$ such that $2^\theta\ge\kappa)$. Then there exists a sequence $\langle g_\delta:C_\delta\rightarrow\omega\mid \delta\in E^{\kappa^+}_\kappa\rangle$ … Continue reading

## Shelah’s approachability ideal (part 2)

In a previous post, we defined Shelah’s approachability ideal $I[\lambda]$. We remind the reader that a subset $S\subseteq\lambda$ is in $I[\lambda]$ iff there exists a collection $\{ \mathcal D_\alpha\mid\alpha<\lambda\}\subseteq\mathcal [\mathcal P(\lambda)]^{<\lambda}$ such that for club many $\delta\in S$, the union … Continue reading

Posted in Blog, Expository, Open Problems
Tagged approachability ideal, Club Guessing
Leave a comment

## Shelah’s approachability ideal (part 1)

Given an infinite cardinal $\lambda$, Shelah defines an ideal $I[\lambda]$ as follows. Definition (Shelah, implicit in here). A set $S$ is in $I[\lambda]$ iff $S\subseteq\lambda$ and there exists a collection $\{ \mathcal D_\alpha\mid\alpha<\lambda\}\subseteq\mathcal [\mathcal P(\lambda)]^{<\lambda}$, and some club $E\subseteq\lambda$, so … Continue reading

## An inconsistent form of club guessing

In this post, we shall present an answer (due to P. Larson) to a question by A. Primavesi concerning a certain strong form of club guessing. We commence with recalling Shelah’s concept of club guessing. Concept (Shelah). Given a regular … Continue reading

## Jensen’s diamond principle and its relatives

This is chapter 6 in the book Set Theory and Its Applications (ISBN: 0821848127). Abstract: We survey some recent results on the validity of Jensen’s diamond principle at successor cardinals. We also discuss weakening of this principle such as club … Continue reading

## On guessing generalized clubs at the successors of regulars

Abstract: Konig, Larson and Yoshinobu initiated the study of principles for guessing generalized clubs, and introduced a construction of an higher Souslin tree from the strong guessing principle. Complementary to the author’s work on the validity of diamond and non-saturation … Continue reading

## Transforming rectangles into squares, with applications to strong colorings

Abstract: It is proved that every singular cardinal $\lambda$ admits a function $\textbf{rts}:[\lambda^+]^2\rightarrow[\lambda^+]^2$ that transforms rectangles into squares. That is, whenever $A,B$ are cofinal subsets of $\lambda^+$, we have $\textbf{rts}[A\circledast B]\supseteq C\circledast C$, for some cofinal subset $C\subseteq\lambda^+$. As a … Continue reading

## The Ostaszewski square, and homogeneous Souslin trees

Abstract: Assume GCH and let $\lambda$ denote an uncountable cardinal. We prove that if $\square_\lambda$ holds, then this may be witnessed by a coherent sequence $\left\langle C_\alpha \mid \alpha<\lambda^+\right\rangle$ with the following remarkable guessing property: For every sequence $\langle A_i\mid i<\lambda\rangle$ … Continue reading

Posted in Publications, Souslin Hypothesis, Squares and Diamonds
Tagged 03E05, 03E35, Club Guessing, Fat stationary set, Ostaszewski square, Souslin Tree
5 Comments