### Archives

### Recent blog posts

- Square principles April 19, 2014
- Partitioning the club guessing January 22, 2014
- Walk on countable ordinals: the characteristics December 1, 2013
- Polychromatic colorings November 26, 2013
- Universal binary sequences November 14, 2013
- Syndetic colorings with applications to S and L October 26, 2013
- Open coloring and the cardinal invariant $\mathfrak b$ October 8, 2013
- Gabriel Belachsan (14/5/1976 – 20/8/2013) August 20, 2013

### Keywords

Whitehead Problem Forcing Axioms L-space b-scale approachability ideal PFA Rock n' Roll Foundations weak diamond Sakurai's Bell inequality Singular Density Almost-disjoint famiy Large Cardinals stationary hitting middle diamond Ostaszewski square Small forcing diamond star Partition Relations PFA(S)[S] sap Uniformization Constructible Universe Antichain Souslin Tree Square-Brackets Partition Relations reflection principles Hereditarily Lindelöf space free Boolean algebra Successor of Singular Cardinal Prevalent singular cardinals very good scale incompactness OCA Almost countably chromatic P-Ideal Dichotomy S-Space Club Guessing Knaster Diamond Cardinal function Poset Rainbow sets Dushnik-Miller Shelah's Strong Hypothesis Universal Sequences Minimal Walks square Martin's Axiom Cardinal Invariants Singular cardinals combinatorics Generalized Clubs Aronszajn tree Prikry-type forcing projective Boolean algebra stationary reflection weak square Mandelbrot set tensor product graph Absoluteness polarized partition relation Cohen real Rado's conjecture Axiom R Erdos Cardinal Successor of Regular Cardinal Chromatic number Singular Cofinality Kurepa Hypothesis Hedetniemi's conjecture Erdos-Hajnal graphs Non-saturation Forcing### Name Dropping

Ace Billet Alan Mekler Albin L. Jones Alex Primavesi Alfred Tarski András Hajnal Benoit Mandelbrot Boban Velickovic Chen Meiri Chris Hadfield Ernest Schimmerling Fred Glavin Gabriel Belachsan Hiroshi Sakai Ilijas Farah Itay Neeman Jack Silver Jim Baumgartner John Krueger Judy Roitman Keith Devlin Menachem Magidor Mirna Dzamonja Moti Gitik Murray Bell Paul Erdős Paul Larson Richard Laver Ronald Jensen Saharon Shelah Sakaé Fuchino Stevo Todorcevic Teruyuki Yorioka Wacław Sierpiński

# Tag Archives: 03E02

## Rectangular square-bracket operation for successor of regular cardinals

Joint work with Stevo Todorcevic. Extended Abstract: Consider the coloring statement $\lambda^+\nrightarrow[\lambda^+;\lambda^+]^2_{\lambda^+}$ for a given regular cardinal $\lambda$: In 1990, Shelah proved the above for $\lambda>2^{\aleph_0}$; In 1991, Shelah proved the above for $\lambda>\aleph_1$; In 1997, Shelah proved the above … Continue reading

## Transforming rectangles into squares, with applications to strong colorings

Abstract: It is proved that every singular cardinal $\lambda$ admits a function $\textbf{rts}:[\lambda^+]^2\rightarrow[\lambda^+]^2$ that transforms rectangles into squares. That is, whenever $A,B$ are cofinal subsets of $\lambda^+$, we have $\textbf{rts}[A\circledast B]\supseteq C\circledast C$, for some cofinal subset $C\subseteq\lambda^+$. As a … Continue reading