### Archives

### Recent blog posts

- The reflection principle $R_2$ May 20, 2016
- Prolific Souslin trees March 17, 2016
- Genearlizations of Martin’s Axiom and the well-met condition January 11, 2015
- Many diamonds from just one January 6, 2015
- Happy new jewish year! September 24, 2014
- Square principles April 19, 2014
- Partitioning the club guessing January 22, 2014
- Walk on countable ordinals: the characteristics December 1, 2013

### Keywords

Rock n' Roll PFA Ostaszewski square Erdos Cardinal S-Space Non-saturation L-space HOD Absoluteness Cohen real Singular Density tensor product graph Large Cardinals weak square square Prevalent singular cardinals OCA Successor of Singular Cardinal diamond star Forcing Axioms Stevo Todorcevic Sakurai's Bell inequality Chromatic number PFA(S)[S] Foundations projective Boolean algebra Minimal Walks Rado's conjecture Singular cardinals combinatorics Cardinal function Small forcing Square-Brackets Partition Relations Partition Relations Knaster Whitehead Problem Prikry-type forcing Ascent Path P-Ideal Dichotomy Martin's Axiom weak diamond Cardinal Invariants stationary reflection ccc Weakly compact cardinal free Boolean algebra reflection principles middle diamond Erdos-Hajnal graphs Poset Singular coﬁnality Mandelbrot set Slim tree very good scale Aronszajn tree Club Guessing incompactness Microscopic Approach Successor of Regular Cardinal polarized partition relation Antichain Almost-disjoint famiy stationary hitting Forcing b-scale Uniformization Almost Souslin Hereditarily Lindelöf space Almost countably chromatic sap Shelah's Strong Hypothesis Selective Ultrafilter Rainbow sets Constructible Universe approachability ideal Parameterized proxy principle Generalized Clubs Hedetniemi's conjecture Kurepa Hypothesis Reduced Power Universal Sequences Coherent tree Dushnik-Miller Souslin Tree Diamond Axiom R Singular Cofinality

# Category Archives: Blog

## The reflection principle $R_2$

A few years ago, in this paper, I introduced the following reflection principle: Definition. $R_2(\theta,\kappa)$ asserts that for every function $f:E^\theta_{<\kappa}\rightarrow\kappa$, there exists some $j<\kappa$ for which the following set is nonstationary: $$A_j:=\{\delta\in E^\theta_\kappa\mid f^{-1}[j]\cap\delta\text{ is nonstationary}\}.$$ I wrote there … Continue reading

Posted in Blog
Tagged reflection principles, square, stationary reflection, Weakly compact cardinal
Leave a comment

## Prolific Souslin trees

In a paper from 1971, Erdos and Hajnal asked whether (assuming CH) every coloring witnessing $\aleph_1\nrightarrow[\aleph_1]^2_3$ has a rainbow triangle. The negative solution was given in a 1975 paper by Shelah, and the proof and relevant definitions may be found … Continue reading

Posted in Blog, Expository
Tagged Rainbow sets, Souslin Tree, Square-Brackets Partition Relations
Leave a comment

## Genearlizations of Martin’s Axiom and the well-met condition

Recall that Martin’s Axiom asserts that for every partial order $\mathbb P$ satisfying c.c.c., and for any family $\mathcal D$ of $<2^{\aleph_0}$ many dense subsets of $\mathbb P$, there exists a directed subset $G$ of $\mathbb P$ such that $G\cap … Continue reading

## Many diamonds from just one

Recall Jensen’s diamond principle over a stationary subset $S$ of a regular uncountable cardinal $\kappa$: there exists a sequence $\langle A_\alpha\mid \alpha\in S \rangle$ such that $\{\alpha\in S\mid A\cap\alpha=A_\alpha\}$ is stationary for every $A\subseteq\kappa$. Equivalently, there exists a sequence $\langle … Continue reading

## Square principles

Since the birth of Jensen’s original Square principle, many variations of the principle were introduced and intensively studied. Asaf Karagila suggested me today to put some order into all of these principles. Here is a trial. Definition. A square principle … Continue reading

## Partitioning the club guessing

In a recent paper, I am making use of the following fact. Theorem (Shelah, 1997). Suppose that $\kappa$ is an accessible cardinal (i.e., there exists a cardinal $\theta<\kappa$ such that $2^\theta\ge\kappa)$. Then there exists a sequence $\langle g_\delta:C_\delta\rightarrow\omega\mid \delta\in E^{\kappa^+}_\kappa\rangle$ … Continue reading

## Walk on countable ordinals: the characteristics

In this post, we shall present a few aspects of the method of walk on ordinals (focusing on countable ordinals), record its characteristics, and verify some of their properties. All definitions and results in this post are due to Todorcevic. … Continue reading

## Polychromatic colorings

These are lectures notes of two talks Dani Livne gave in our Infinite Combinatorics seminar. I did not take notes in real-time, hence, all possible mistakes here are due to myself. Recall that a function $f:A\rightarrow B$ is said to … Continue reading

## Universal binary sequences

Notation. Write $\mathcal Q(A):=\{ a\subseteq A\mid a\text{ is finite}, a\neq\emptyset\}$. Suppose for the moment that we are given a fixed sequence $\langle f_\alpha:\omega\rightarrow2\mid \alpha\in a\rangle$, indexed by some set $a$ of ordinals. Then, for every function $h:a\rightarrow\omega$ and $i<\omega$, we … Continue reading