### Archives

### Recent blog posts

- Happy new jewish year! September 24, 2014
- Square principles April 19, 2014
- Partitioning the club guessing January 22, 2014
- Walk on countable ordinals: the characteristics December 1, 2013
- Polychromatic colorings November 26, 2013
- Universal binary sequences November 14, 2013
- Syndetic colorings with applications to S and L October 26, 2013
- Open coloring and the cardinal invariant $\mathfrak b$ October 8, 2013

### Keywords

Constructible Universe Cohen real weak diamond Dushnik-Miller Foundations PFA(S)[S] Partition Relations Weakly compact cardinal incompactness Successor of Singular Cardinal Rainbow sets Chromatic number Martin's Axiom Large Cardinals projective Boolean algebra stationary reflection polarized partition relation Rado's conjecture approachability ideal Uniformization Ostaszewski square Generalized Clubs Kurepa Hypothesis Prikry-type forcing Successor of Regular Cardinal b-scale Poset middle diamond S-Space Aronszajn tree sap weak square P-Ideal Dichotomy tensor product graph Shelah's Strong Hypothesis very good scale Antichain Hedetniemi's conjecture stationary hitting Rock n' Roll Erdos Cardinal Prevalent singular cardinals PFA Diamond Non-saturation Erdos-Hajnal graphs Mandelbrot set Universal Sequences Club Guessing Singular Cofinality Almost countably chromatic reflection principles Forcing Axioms diamond star Singular cardinals combinatorics Square-Brackets Partition Relations Minimal Walks Sakurai's Bell inequality OCA square Forcing Small forcing Absoluteness Souslin Tree L-space Cardinal Invariants Knaster Whitehead Problem Almost-disjoint famiy Hereditarily Lindelöf space free Boolean algebra ccc Axiom R Singular Density Cardinal function

# Category Archives: Blog

## Square principles

Since the birth of Jensen’s original Square principle, many variations of the principle were introduced and intensively studied. Asaf Karagila suggested me today to put some order into all of these principles. Here is a trial. Definition. A square principle … Continue reading

## Partitioning the club guessing

In a recent paper, I am making use of the following fact. Theorem (Shelah, 1997). Suppose that $\kappa$ is an accessible cardinal (i.e., there exists a cardinal $\theta<\kappa$ such that $2^\theta\ge\kappa)$. Then there exists a sequence $\langle g_\delta:C_\delta\rightarrow\omega\mid \delta\in E^{\kappa^+}_\kappa\rangle$ … Continue reading

## Walk on countable ordinals: the characteristics

In this post, we shall present a few aspects of the method of walk on ordinals (focusing on countable ordinals), record its characteristics, and verify some of their properties. All definitions and results in this post are due to Todorcevic. … Continue reading

## Polychromatic colorings

These are lectures notes of two talks Dani Livne gave in our Infinite Combinatorics seminar. I did not take notes in real-time, hence, all possible mistakes here are due to myself. Recall that a function $f:A\rightarrow B$ is said to … Continue reading

## Universal binary sequences

Notation. Write $\mathcal Q(A):=\{ a\subseteq A\mid a\text{ is finite}, a\neq\emptyset\}$. Suppose for the moment that we are given a fixed sequence $\langle f_\alpha:\omega\rightarrow2\mid \alpha\in a\rangle$, indexed by some set $a$ of ordinals. Then, for every function $h:a\rightarrow\omega$ and $i<\omega$, we … Continue reading

## Syndetic colorings with applications to S and L

Notation. Write $\mathcal Q(A):=\{ a\subseteq A\mid a\text{ is finite}, a\neq\emptyset\}$. Definition. An L-space is a regular hereditarily Lindelöf topological space which is not hereditarily separable. Definition. We say that a coloring $c:[\omega_1]^2\rightarrow\omega$ is L-syndetic if the following holds. For every uncountable … Continue reading

Posted in Blog, Expository, Open Problems
Tagged L-space, S-Space, Universal Sequences
Leave a comment

## Open coloring and the cardinal invariant $\mathfrak b$

Nik Weaver asked for a direct proof of the fact that Todorcevic’s axiom implies the failure of CH fails. Here goes. Notation. For a set $X$, we write $[X]^2$ for the set of unordered pairs $\{ \{x,x’\}\mid x,x’\in X, x\neq … Continue reading

## Gabriel Belachsan (14/5/1976 – 20/8/2013)

רק כשעיני סגורות, עולם נגלה לפני

## PFA and the tree property at $\aleph_2$

Recall that a poset $\langle T,\le\rangle$ is said to be a $\lambda^+$-Aronszajn tree, if it isomorphic to a poset $(\mathcal T,\subseteq)$ of the form: $\emptyset\in \mathcal T\subseteq{}^{<\lambda^+}\lambda$; Write $\mathcal T_\alpha:=\{\sigma\in\mathcal T\mid \text{dom}(\sigma)=\alpha\}$; for all $\alpha<\lambda^+$, $\mathcal T_\alpha$ has size $\le\lambda$, … Continue reading