### Archives

### Recent blog posts

- Prikry forcing may add a Souslin tree June 12, 2016
- The reflection principle $R_2$ May 20, 2016
- Prolific Souslin trees March 17, 2016
- Generalizations of Martin’s Axiom and the well-met condition January 11, 2015
- Many diamonds from just one January 6, 2015
- Happy new jewish year! September 24, 2014
- Square principles April 19, 2014
- Partitioning the club guessing January 22, 2014

### Keywords

approachability ideal Sakurai's Bell inequality weak square Knaster Kurepa Hypothesis projective Boolean algebra Jonsson cardinal Successor of Regular Cardinal Club Guessing L-space square reflection principles ccc Cardinal function Slim tree Martin's Axiom Microscopic Approach Fat stationary set Chang's conjecture Minimal Walks Forcing Large Cardinals Uniformization Erdos-Hajnal graphs Absoluteness square principles Foundations Aronszajn tree Dushnik-Miller HOD Diamond Small forcing Forcing Axioms Fast club middle diamond Erdos Cardinal Commutative cancellative semigroups Souslin Tree Rock n' Roll Axiom R PFA stationary hitting Universal Sequences Ostaszewski square Whitehead Problem 20M14 diamond star weak diamond 11P99 Generalized Clubs free Boolean algebra Nonspecial tree Reduced Power xbox Mandelbrot set incompactness Antichain Selective Ultrafilter PFA(S)[S] Constructible Universe stationary reflection Almost countably chromatic Rainbow sets Stevo Todorcevic Almost-disjoint famiy Rado's conjecture Hereditarily Lindelöf space sap Successor of Singular Cardinal Hedetniemi's conjecture 05A17 Prevalent singular cardinals P-Ideal Dichotomy Non-saturation Singular coﬁnality Almost Souslin tensor product graph Parameterized proxy principle Fodor-type reflection Cardinal Invariants Singular Density S-Space Weakly compact cardinal Coherent tree Square-Brackets Partition Relations Poset Cohen real Prikry-type forcing b-scale polarized partition relation Ascent Path Hindman's Theorem very good scale Postprocessing function 05D10 Partition Relations coloring number Uniformly coherent Shelah's Strong Hypothesis Singular cardinals combinatorics Distributive tree Chromatic number OCA

# Category Archives: Blog

## Prikry forcing may add a Souslin tree

A celebrated theorem of Shelah states that adding a Cohen real introduces a Souslin tree. Are there any other examples of notions of forcing that add a $\kappa$-Souslin tree? and why is this of interest? My motivation comes from a … Continue reading

## The reflection principle $R_2$

A few years ago, in this paper, I introduced the following reflection principle: Definition. $R_2(\theta,\kappa)$ asserts that for every function $f:E^\theta_{<\kappa}\rightarrow\kappa$, there exists some $j<\kappa$ for which the following set is nonstationary: $$A_j:=\{\delta\in E^\theta_\kappa\mid f^{-1}[j]\cap\delta\text{ is nonstationary}\}.$$ I wrote there … Continue reading

Posted in Blog
Tagged reflection principles, square, stationary reflection, Weakly compact cardinal
Leave a comment

## Prolific Souslin trees

In a paper from 1971, Erdos and Hajnal asked whether (assuming CH) every coloring witnessing $\aleph_1\nrightarrow[\aleph_1]^2_3$ has a rainbow triangle. The negative solution was given in a 1975 paper by Shelah, and the proof and relevant definitions may be found … Continue reading

Posted in Blog, Expository
Tagged Rainbow sets, Souslin Tree, Square-Brackets Partition Relations
Leave a comment

## Generalizations of Martin’s Axiom and the well-met condition

Recall that Martin’s Axiom asserts that for every partial order $\mathbb P$ satisfying c.c.c., and for any family $\mathcal D$ of $<2^{\aleph_0}$ many dense subsets of $\mathbb P$, there exists a directed subset $G$ of $\mathbb P$ such that $G\cap … Continue reading

## Many diamonds from just one

Recall Jensen’s diamond principle over a stationary subset $S$ of a regular uncountable cardinal $\kappa$: there exists a sequence $\langle A_\alpha\mid \alpha\in S \rangle$ such that $\{\alpha\in S\mid A\cap\alpha=A_\alpha\}$ is stationary for every $A\subseteq\kappa$. Equivalently, there exists a sequence $\langle … Continue reading

## Square principles

Since the birth of Jensen’s original Square principle, many variations of the principle were introduced and intensively studied. Asaf Karagila suggested me today to put some order into all of these principles. Here is a trial. Definition. A square principle … Continue reading

## Partitioning the club guessing

In a recent paper, I am making use of the following fact. Theorem (Shelah, 1997). Suppose that $\kappa$ is an accessible cardinal (i.e., there exists a cardinal $\theta<\kappa$ such that $2^\theta\ge\kappa)$. Then there exists a sequence $\langle g_\delta:C_\delta\rightarrow\omega\mid \delta\in E^{\kappa^+}_\kappa\rangle$ … Continue reading

## Walk on countable ordinals: the characteristics

In this post, we shall present a few aspects of the method of walk on ordinals (focusing on countable ordinals), record its characteristics, and verify some of their properties. All definitions and results in this post are due to Todorcevic. … Continue reading

## Polychromatic colorings

These are lectures notes of two talks Dani Livne gave in our Infinite Combinatorics seminar. I did not take notes in real-time, hence, all possible mistakes here are due to myself. Recall that a function $f:A\rightarrow B$ is said to … Continue reading