### Archives

### Recent blog posts

- Prikry forcing may add a Souslin tree June 12, 2016
- The reflection principle $R_2$ May 20, 2016
- Prolific Souslin trees March 17, 2016
- Generalizations of Martin’s Axiom and the well-met condition January 11, 2015
- Many diamonds from just one January 6, 2015
- Happy new jewish year! September 24, 2014
- Square principles April 19, 2014
- Partitioning the club guessing January 22, 2014

### Keywords

Almost-disjoint famiy Rado's conjecture Whitehead Problem incompactness stationary reflection Ostaszewski square Foundations Almost Souslin Axiom R Partition Relations Hindman's Theorem stationary hitting 20M14 05A17 Slim tree PFA(S)[S] projective Boolean algebra Sakurai's Bell inequality middle diamond weak square Absoluteness Forcing Axioms OCA Cohen real PFA Mandelbrot set Hedetniemi's conjecture approachability ideal 11P99 Minimal Walks Singular Density Large Cardinals Universal Sequences very good scale square HOD Parameterized proxy principle ccc Singular Cofinality Fat stationary set Souslin Tree Fast club Hereditarily Lindelöf space Non-saturation Erdos-Hajnal graphs Dushnik-Miller Square-Brackets Partition Relations polarized partition relation 05D10 Microscopic Approach b-scale Prevalent singular cardinals Diamond Fodor-type reflection Erdos Cardinal Reduced Power Chromatic number Rainbow sets L-space Prikry-type forcing diamond star Coherent tree Knaster Uniformization Constructible Universe Club Guessing Poset xbox weak diamond Ascent Path Almost countably chromatic Small forcing Rock n' Roll Successor of Regular Cardinal Chang's conjecture Kurepa Hypothesis P-Ideal Dichotomy Commutative cancellative semigroups reflection principles Forcing Generalized Clubs Aronszajn tree Singular coﬁnality Successor of Singular Cardinal Martin's Axiom Singular cardinals combinatorics Selective Ultrafilter Cardinal function sap tensor product graph S-Space Jonsson cardinal Antichain Cardinal Invariants Stevo Todorcevic free Boolean algebra Weakly compact cardinal Shelah's Strong Hypothesis coloring number

# Category Archives: Publications

## The eightfold way

Joint work with James Cummings, Sy-David Friedman, Menachem Magidor, and Dima Sinapova. Abstract. Three central combinatorial properties in set theory are the tree property, the approachability property and stationary reflection. We prove the mutual independence of these properties by showing … Continue reading

## Reflection on the coloring and chromatic numbers

Joint work with Chris Lambie-Hanson. Abstract. We prove that reflection of the coloring number of graphs is consistent with non-reflection of the chromatic number. Moreover, it is proved that incompactness for the chromatic number of graphs (with arbitrarily large gaps) … Continue reading

## Strong failures of higher analogs of Hindman’s Theorem

Joint work with David J. Fernández Bretón. Abstract. We show that various analogs of Hindman’s Theorem fail in a strong sense when one attempts to obtain uncountable monochromatic sets: Theorem 1. There exists a colouring $c:\mathbb R\rightarrow\mathbb Q$, such that … Continue reading

## More notions of forcing add a Souslin tree

Joint work with Ari Meir Brodsky. Abstract. An $\aleph_1$-Souslin tree is a complicated combinatorial object whose existence cannot be decided on the grounds of ZFC alone. But 15 years after Tennenbaum and independently Jech devised notions of forcing for introducing … Continue reading

## Ordinal definable subsets of singular cardinals

Joint work with James Cummings, Sy-David Friedman, Menachem Magidor, and Dima Sinapova. Abstract. A remarkable result by Shelah states that if $\kappa$ is a singular strong limit cardinal of uncountable cofinality then there is a subset $x$ of $\kappa$ such … Continue reading

Posted in Preprints, Singular Cardinals Combinatorics
Tagged HOD, Singular cardinals combinatorics
1 Comment

## Higher Souslin trees and the GCH, revisited

Abstract. It is proved that for every uncountable cardinal $\lambda$, GCH+$\square(\lambda^+)$ entails the existence of a $\text{cf}(\lambda)$-complete $\lambda^+$-Souslin tree. In particular, if GCH holds and there are no $\aleph_2$-Souslin trees, then $\aleph_2$ is weakly compact in Godel’s constructible universe, improving … Continue reading

Posted in Publications, Souslin Hypothesis
Tagged 03E05, 03E35, Souslin Tree, square, Weakly compact cardinal, xbox
16 Comments

## A Microscopic approach to Souslin-tree constructions. Part I

Joint work with Ari Meir Brodsky. Abstract. We propose a parameterized proxy principle from which $\kappa$-Souslin trees with various additional features can be constructed, regardless of the identity of $\kappa$. We then introduce the microscopic approach, which is a simple … Continue reading

Posted in Preprints, Souslin Hypothesis
Tagged 03E05, 03E35, 03E65, 05C05, Coherent tree, Diamond, Microscopic Approach, Parameterized proxy principle, Slim tree, Souslin Tree, square, xbox
3 Comments

## Square with built-in diamond-plus

Joint work with Ralf Schindler. Abstract. We formulate combinatorial principles that combine the square principle with various strong forms of diamond, and prove that the strongest amongst them holds in $L$ for every infinite cardinal. As an application, we prove that … Continue reading

Posted in Publications, Squares and Diamonds
Tagged 03E05, 03E45, Almost Souslin, diamond star, Kurepa Hypothesis, Minimal Walks, square, xbox
1 Comment

## Reduced powers of Souslin trees

Joint work with Ari Meir Brodsky. Abstract. We study the relationship between a $\kappa$-Souslin tree $T$ and its reduced powers $T^\theta/\mathcal U$. Previous works addressed this problem from the viewpoint of a single power $\theta$, whereas here, tools are developed … Continue reading

## Putting a diamond inside the square

Abstract. By a 35-year-old theorem of Shelah, $\square_\lambda+\diamondsuit(\lambda^+)$ does not imply square-with-built-in-diamond_lambda for regular uncountable cardinals $\lambda$. Here, it is proved that $\square_\lambda+\diamondsuit(\lambda^+)$ is equivalent to square-with-built-in-diamond_lambda for every singular cardinal $\lambda$. Downloads: Citation information: A. Rinot, Putting a diamond inside … Continue reading

Posted in Publications, Squares and Diamonds
Tagged 03E05, 03E45, Diamond, square, Successor of Singular Cardinal
1 Comment