### Archives

### Recent blog posts

- Prikry forcing may add a Souslin tree June 12, 2016
- The reflection principle $R_2$ May 20, 2016
- Prolific Souslin trees March 17, 2016
- Generalizations of Martin’s Axiom and the well-met condition January 11, 2015
- Many diamonds from just one January 6, 2015
- Happy new jewish year! September 24, 2014
- Square principles April 19, 2014
- Partitioning the club guessing January 22, 2014

### Keywords

Fast club 20M14 Absoluteness projective Boolean algebra Luzin set Souslin Tree Parameterized proxy principle Prikry-type forcing Ostaszewski square Cardinal function Small forcing Non-saturation Successor of Regular Cardinal Sakurai's Bell inequality L-space Almost countably chromatic Commutative cancellative semigroups Hindman's Theorem very good scale Weakly compact cardinal PFA(S)[S] Uniformly coherent Chang's conjecture Martin's Axiom Reduced Power Forcing Hedetniemi's conjecture Almost Souslin Axiom R Dushnik-Miller Mandelbrot set Prevalent singular cardinals sap Constructible Universe Hereditarily Lindelöf space Cardinal Invariants Coherent tree weak diamond Selective Ultrafilter reflection principles Erdos-Hajnal graphs Aronszajn tree Minimal Walks xbox ccc S-Space Whitehead Problem Knaster weak square Uniformization Club Guessing square principles Singular cardinals combinatorics Fodor-type reflection Generalized Clubs Stevo Todorcevic diamond star Forcing Axioms Singular Density Jonsson cardinal Diamond Universal Sequences stationary reflection polarized partition relation coloring number Rainbow sets P-Ideal Dichotomy Nonspecial tree approachability ideal Square-Brackets Partition Relations 05A17 Erdos Cardinal HOD Antichain Microscopic Approach OCA 05D10 Large Cardinals Kurepa Hypothesis Postprocessing function Cohen real Successor of Singular Cardinal Poset 11P99 middle diamond free Boolean algebra Chromatic number PFA incompactness Rado's conjecture tensor product graph Fat stationary set Almost-disjoint famiy Ascent Path square b-scale Partition Relations Slim tree Rock n' Roll stationary hitting Shelah's Strong Hypothesis Distributive tree Singular coﬁnality Foundations

# Category Archives: Squares and Diamonds

## Distributive Aronszajn trees

Joint work with Ari Meir Brodsky. Abstract. Ben-David and Shelah proved that if $\lambda$ is a singular strong-limit cardinal and $2^\lambda=\lambda^+$, then $\square^*_\lambda$ entails the existence of a $\lambda$-distributive $\lambda^+$-Aronszajn tree. Here, it is proved that the same conclusion remains … Continue reading

## Square with built-in diamond-plus

Joint work with Ralf Schindler. Abstract. We formulate combinatorial principles that combine the square principle with various strong forms of diamond, and prove that the strongest amongst them holds in $L$ for every infinite cardinal. As an application, we prove that … Continue reading

Posted in Publications, Squares and Diamonds
Tagged 03E05, 03E45, Almost Souslin, diamond star, Kurepa Hypothesis, Minimal Walks, square, xbox
1 Comment

## Putting a diamond inside the square

Abstract. By a 35-year-old theorem of Shelah, $\square_\lambda+\diamondsuit(\lambda^+)$ does not imply square-with-built-in-diamond_lambda for regular uncountable cardinals $\lambda$. Here, it is proved that $\square_\lambda+\diamondsuit(\lambda^+)$ is equivalent to square-with-built-in-diamond_lambda for every singular cardinal $\lambda$. Downloads: Citation information: A. Rinot, Putting a diamond inside … Continue reading

Posted in Publications, Squares and Diamonds
Tagged 03E05, 03E45, Diamond, square, Successor of Singular Cardinal
1 Comment

## The search for diamonds

Abstract: This is a review I wrote for the Bulletin of Symbolic Logic on the following papers: Saharon Shelah, Middle Diamond, Archive for Mathematical Logic, vol. 44 (2005), pp. 527–560. Saharon Shelah, Diamonds, Proceedings of the American Mathematical Society, vol. … Continue reading

Posted in Publications, Reviews, Squares and Diamonds
Tagged Diamond, middle diamond, weak diamond, weak square
1 Comment

## Jensen’s diamond principle and its relatives

This is chapter 6 in the book Set Theory and Its Applications (ISBN: 0821848127). Abstract: We survey some recent results on the validity of Jensen’s diamond principle at successor cardinals. We also discuss weakening of this principle such as club … Continue reading

## A cofinality-preserving small forcing may introduce a special Aronszajn tree

Extended Abstract: Shelah proved that Cohen forcing introduces a Souslin tree; Jensen proved that a c.c.c. forcing may consistently add a Kurepa tree; Todorcevic proved that a Knaster poset may already force the Kurepa hypothesis; Irrgang introduced a c.c.c. notion … Continue reading

Posted in Publications, Squares and Diamonds
Tagged 03E04, 03E05, 03E35, Aronszajn tree, Small forcing, Successor of Singular Cardinal, weak square
Leave a comment

## The failure of diamond on a reflecting stationary set

Joint work with Moti Gitik. Abstract: It is shown that the failure of $\diamondsuit_S$, for a subset $S\subseteq\aleph_{\omega+1}$ that reflects stationarily often, is consistent with GCH and $\text{AP}_{\aleph_\omega}$, relatively to the existence of a supercompact cardinal. This should be comapred with … Continue reading

## A relative of the approachability ideal, diamond and non-saturation

Abstract: Let $\lambda$ denote a singular cardinal. Zeman, improving a previous result of Shelah, proved that $\square^*_\lambda$ together with $2^\lambda=\lambda^+$ implies $\diamondsuit_S$ for every $S\subseteq\lambda^+$ that reflects stationarily often. In this paper, for a subset $S\subset\lambda^+$, a normal subideal of … Continue reading

## On guessing generalized clubs at the successors of regulars

Abstract: Konig, Larson and Yoshinobu initiated the study of principles for guessing generalized clubs, and introduced a construction of an higher Souslin tree from the strong guessing principle. Complementary to the author’s work on the validity of diamond and non-saturation … Continue reading

## The Ostaszewski square, and homogeneous Souslin trees

Abstract: Assume GCH and let $\lambda$ denote an uncountable cardinal. We prove that if $\square_\lambda$ holds, then this may be witnessed by a coherent sequence $\left\langle C_\alpha \mid \alpha<\lambda^+\right\rangle$ with the following remarkable guessing property: For every sequence $\langle A_i\mid i<\lambda\rangle$ … Continue reading

Posted in Publications, Souslin Hypothesis, Squares and Diamonds
Tagged 03E05, 03E35, Club Guessing, Fat stationary set, Ostaszewski square, Souslin Tree
5 Comments